55 research outputs found

    A Survey of Lightweight Cryptosystems for Smart Home Devices

    Get PDF
    A Smart Home uses interconnected network technology to monitor the environment, control the various physical appliances, and communicate with each other in a close environment. A typical smart home is made up of a security system, intercommunication system, lighting system, and ventilation system.  Data security schemes for smart homes are ineffective due to inefficiency cryptosystems, high energy consumption, and low exchange security. Traditional cryptosystems are less-applicable because of their large block size, large key size, and complex rounds. This paper conducts a review of smart homes, and adopts Ultra-Sooner Lightweight Cryptography to secure home door. It provides extensive background of cryptography, forms of cryptography as associated issues and strengths, current trends, smart home door system design, and future works suggestions. Specifically, there are prospects of utilizing XORed lightweight cryptosystem for developing encryption and decryption algorithms in smart home devices. The Substitution Permutation Network, and Feistel Network cryptographic primitives were most advanced forms of cipher operations with security guarantees. Therefore, better security, memory and energy efficiency can be obtained with lightweight ciphers in smart home devices when compared to existing solutions. In the subsequent studies, a blockchain-based lightweight cryptography can be the next springboard in attaining the most advanced security for smart home systems and their appliances.     &nbsp

    Lightweight Cryptography for Passive RFID Tags

    Get PDF

    Survey: An overview of lightweight RFID authentication protocols suitable for the maritime internet of things

    Get PDF
    The maritime sector employs the Internet of Things (IoT) to exploit many of its benefits to maintain a competitive advantage and keep up with the growing demands of the global economy. The maritime IoT (MIoT) not only inherits similar security threats as the general IoT, it also faces cyber threats that do not exist in the traditional IoT due to factors such as the support for long-distance communication and low-bandwidth connectivity. Therefore, the MIoT presents a significant concern for the sustainability and security of the maritime industry, as a successful cyber attack can be detrimental to national security and have a flow-on effect on the global economy. A common component of maritime IoT systems is Radio Frequency Identification (RFID) technology. It has been revealed in previous studies that current RFID authentication protocols are insecure against a number of attacks. This paper provides an overview of vulnerabilities relating to maritime RFID systems and systematically reviews lightweight RFID authentication protocols and their impacts if they were to be used in the maritime sector. Specifically, this paper investigates the capabilities of lightweight RFID authentication protocols that could be used in a maritime environment by evaluating those authentication protocols in terms of the encryption system, authentication method, and resistance to various wireless attacks

    Técnicas de segurança para a internet das coisas

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaIoT assume que dispositivos limitados, tanto em capacidades computacionais como em energia disponível, façam parte da sua infraestrutura. Dispositivos esses que apresentam menos capacidades e mecanismos de defesa do que as máquinas de uso geral. É imperativo aplicar segurança nesses dispositivos e nas suas comunicações de maneira a prepará-los para as ameaças da Internet e alcançar uma verdadeira e segura Internet das Coisas, em concordância com as visões atuais para o futuro. Esta dissertação pretende ser um pequeno passo nesse sentido, apresentando alternativas para proteger as comunicações de dispositivos restritos numa perspetiva de performance assim como avaliar o desempenho e a ocupação de recursos por parte de primitivas criptográficas quando são aplicadas em dispositivos reais. Dado que a segurança em diversas ocasiões tem de se sujeitar aos recursos deixados após a implementação de funcionalidades, foi colocada uma implementação de exposição de funcionalidades, recorrendo ao uso de CoAP, num dispositivo fabricado com intenção de ser usado em IoT e avaliada de acordo com a sua ocupação de recursos.IoT comprehends devices constrained in both computational capabilities and available energy to be a part of its infrastructure. Devices which also present less defense capabilities and mechanisms than general purpose machines. It’s imperative to secure such devices and their communications in order to prepare them for the Internet menaces and achieve a true and secure Internet of Things compliant with today’s future visions. This dissertation intends to be a small step towards such future by presenting alternatives to protect constrained device’s communications in a performance related perspective as well as benchmarks and evaluation of resources used by cryptographic primitives when implemented on real devices. Due to security being on multiple occasions subjected to the resources available only after functionalities implementation, a minimalist implementation of functionalities exposure through the use of CoAP was also deployed in an IoT intended device and assessed according to resource overhead
    • …
    corecore