25,029 research outputs found

    A Lightweight Multilevel Markup Language for Connecting Software Requirements and Simulations

    Get PDF
    [Context] Simulation is a powerful tool to validate specified requirements especially for complex systems that constantly monitor and react to characteristics of their environment. The simulators for such systems are complex themselves as they simulate multiple actors with multiple interacting functions in a number of different scenarios. To validate requirements in such simulations, the requirements must be related to the simulation runs. [Problem] In practice, engineers are reluctant to state their requirements in terms of structured languages or models that would allow for a straightforward relation of requirements to simulation runs. Instead, the requirements are expressed as unstructured natural language text that is hard to assess in a set of complex simulation runs. Therefore, the feedback loop between requirements and simulation is very long or non-existent at all. [Principal idea] We aim to close the gap between requirements specifications and simulation by proposing a lightweight markup language for requirements. Our markup language provides a set of annotations on different levels that can be applied to natural language requirements. The annotations are mapped to simulation events. As a result, meaningful information from a set of simulation runs is shown directly in the requirements specification. [Contribution] Instead of forcing the engineer to write requirements in a specific way just for the purpose of relating them to a simulator, the markup language allows annotating the already specified requirements up to a level that is interesting for the engineer. We evaluate our approach by analyzing 8 original requirements of an automotive system in a set of 100 simulation runs

    What Am I Testing and Where? Comparing Testing Procedures based on Lightweight Requirements Annotations

    Get PDF
    [Context] The testing of software-intensive systems is performed in different test stages each having a large number of test cases. These test cases are commonly derived from requirements. Each test stages exhibits specific demands and constraints with respect to their degree of detail and what can be tested. Therefore, specific test suites are defined for each test stage. In this paper, the focus is on the domain of embedded systems, where, among others, typical test stages are Software- and Hardware-in-the-loop. [Objective] Monitoring and controlling which requirements are verified in which detail and in which test stage is a challenge for engineers. However, this information is necessary to assure a certain test coverage, to minimize redundant testing procedures, and to avoid inconsistencies between test stages. In addition, engineers are reluctant to state their requirements in terms of structured languages or models that would facilitate the relation of requirements to test executions. [Method] With our approach, we close the gap between requirements specifications and test executions. Previously, we have proposed a lightweight markup language for requirements which provides a set of annotations that can be applied to natural language requirements. The annotations are mapped to events and signals in test executions. As a result, meaningful insights from a set of test executions can be directly related to artifacts in the requirements specification. In this paper, we use the markup language to compare different test stages with one another. [Results] We annotate 443 natural language requirements of a driver assistance system with the means of our lightweight markup language. The annotations are then linked to 1300 test executions from a simulation environment and 53 test executions from test drives with human drivers. Based on the annotations, we are able to analyze how similar the test stages are and how well test stages and test cases are aligned with the requirements. Further, we highlight the general applicability of our approach through this extensive experimental evaluation. [Conclusion] With our approach, the results of several test levels are linked to the requirements and enable the evaluation of complex test executions. By this means, practitioners can easily evaluate how well a systems performs with regards to its specification and, additionally, can reason about the expressiveness of the applied test stage.TU Berlin, Open-Access-Mittel - 202

    Clafer: Lightweight Modeling of Structure, Behaviour, and Variability

    Get PDF
    Embedded software is growing fast in size and complexity, leading to intimate mixture of complex architectures and complex control. Consequently, software specification requires modeling both structures and behaviour of systems. Unfortunately, existing languages do not integrate these aspects well, usually prioritizing one of them. It is common to develop a separate language for each of these facets. In this paper, we contribute Clafer: a small language that attempts to tackle this challenge. It combines rich structural modeling with state of the art behavioural formalisms. We are not aware of any other modeling language that seamlessly combines these facets common to system and software modeling. We show how Clafer, in a single unified syntax and semantics, allows capturing feature models (variability), component models, discrete control models (automata) and variability encompassing all these aspects. The language is built on top of first order logic with quantifiers over basic entities (for modeling structures) combined with linear temporal logic (for modeling behaviour). On top of this semantic foundation we build a simple but expressive syntax, enriched with carefully selected syntactic expansions that cover hierarchical modeling, associations, automata, scenarios, and Dwyer's property patterns. We evaluate Clafer using a power window case study, and comparing it against other notations that substantially overlap with its scope (SysML, AADL, Temporal OCL and Live Sequence Charts), discussing benefits and perils of using a single notation for the purpose

    Towards Business Processes Orchestrating the Physical Enterprise with Wireless Sensor Networks

    Get PDF
    The industrial adoption of wireless sensor net- works (WSNs) is hampered by two main factors. First, there is a lack of integration of WSNs with business process modeling languages and back-ends. Second, programming WSNs is still challenging as it is mainly performed at the operating system level. To this end, we provide makeSense: a unified programming framework and a compilation chain that, from high-level business process specifications, generates code ready for deployment on WSN nodes

    An LTL Semantics of Business Workflows with Recovery

    Full text link
    We describe a business workflow case study with abnormal behavior management (i.e. recovery) and demonstrate how temporal logics and model checking can provide a methodology to iteratively revise the design and obtain a correct-by construction system. To do so we define a formal semantics by giving a compilation of generic workflow patterns into LTL and we use the bound model checker Zot to prove specific properties and requirements validity. The working assumption is that such a lightweight approach would easily fit into processes that are already in place without the need for a radical change of procedures, tools and people's attitudes. The complexity of formalisms and invasiveness of methods have been demonstrated to be one of the major drawback and obstacle for deployment of formal engineering techniques into mundane projects

    A formal verification framework and associated tools for enterprise modeling : application to UEML

    Get PDF
    The aim of this paper is to propose and apply a verification and validation approach to Enterprise Modeling that enables the user to improve the relevance and correctness, the suitability and coherence of a model by using properties specification and formal proof of properties
    • ā€¦
    corecore