291 research outputs found

    MUMAP: Modified Ultralightweight Mutual Authentication protocol for RFID enabled IoT networks

    Get PDF
    Flawed authentication protocols led to the need for a secured protocol for radio frequency identification (RFID) techniques. In this paper, an authentication protocol named Modified ultralightweight mutual authentication protocol (MUMAP) has been proposed and cryptanalysed by Juel-Weis challenge. The proposed protocol aimed to reduce memory requirements in the authentication process for low-cost RFID tags with limited resources. Lightweight operations like XOR and Left Rotation, are used to circumvent the flaws made in the other protocols. The proposed protocol has three-phase of authentication. Security analysis of the proposed protocol proves its resistivity against attacks like desynchronization, disclosure, tracking, and replay attack. On the other hand, performance analysis indicates that it is an effective protocol to use in low-cost RFID tags. Juel-Weis challenge verifies the proposed protocol where it shows insusceptibility against modular operations

    Survey on Lightweight Primitives and Protocols for RFID in Wireless Sensor Networks

    Get PDF
    The use of radio frequency identification (RFID) technologies is becoming widespread in all kind of wireless network-based applications. As expected, applications based on sensor networks, ad-hoc or mobile ad hoc networks (MANETs) can be highly benefited from the adoption of RFID solutions. There is a strong need to employ lightweight cryptographic primitives for many security applications because of the tight cost and constrained resource requirement of sensor based networks. This paper mainly focuses on the security analysis of lightweight protocols and algorithms proposed for the security of RFID systems. A large number of research solutions have been proposed to implement lightweight cryptographic primitives and protocols in sensor and RFID integration based resource constraint networks. In this work, an overview of the currently discussed lightweight primitives and their attributes has been done. These primitives and protocols have been compared based on gate equivalents (GEs), power, technology, strengths, weaknesses and attacks. Further, an integration of primitives and protocols is compared with the possibilities of their applications in practical scenarios

    Serverless protocols for inventory and tracking with a UAV

    Get PDF
    It is widely acknowledged that the proliferation of Unmanned Aerial Vehicles (UAVs) may lead to serious concerns regarding avionics safety, particularly when end-users are not adhering to air safety regulations. There are, however, domains in which UAVs may help to increase the safety of airplanes and the management of flights and airport resources that often require substantial human resources. For instance, Paris Charles de Gaulle airport (CDG) has more than 7,000 staff and supports 30,000 direct jobs for more than 60 million passengers per year (as of 2016). Indeed, these new systems can be used beneficially for several purposes, even in sensitive areas like airports. Among the considered applications are those that suggest using UAVs to enhance safety of on-ground airplanes; for instance, by collecting (once the aircraft has landed) data recorded by different systems during the flight (like the sensors of the Aircraft Data Networks - ADN) or by examining the state of airplane structure. In this paper, our proposal is to use UAVs, under the control of the airport authorities, to inventory and track various tagged assets, such as luggage, supplies required for the flights, and maintenance tools. The aim of our proposal is to make airport management systems more efficient for operations requiring inventory and tracking, along with increasing safety (sensitive assets such as refueling tanks, or sensitive pieces of luggage can be tracked), thus raising financial profit.Comment: 11 pages, Conference, The 36th IEEE/AIAA Digital Avionics Systems Conference (DASC'17

    A secure lightweight authentication mechanism for IoT devices in generic domain

    Get PDF
    The Internet of Things prompt deployment enhances the security concerns of these systems in recent years. The enormous exchange of sensory information between devices raises the necessity for a secure authentication scheme for Internet of Things devices. Despite many proposed schemes, providing authenticated and secure communication for Internet of Things devices is still an open issue. This research addresses challenges pertaining to the Internet of Things authentication, verification, and communication, and proposes a new secure lightweight mechanism for Internet of Things devices in the generic domain. The proposed authentication method utilizes environmental variables obtained by sensors to allow the system to identify genuine devices and reject anomalous connections
    • …
    corecore