1,457 research outputs found

    A Retinex-based Image Enhancement Scheme with Noise Aware Shadow-up Function

    Full text link
    This paper proposes a novel image contrast enhancement method based on both a noise aware shadow-up function and Retinex (retina and cortex) decomposition. Under low light conditions, images taken by digital cameras have low contrast in dark or bright regions. This is due to a limited dynamic range that imaging sensors have. For this reason, various contrast enhancement methods have been proposed. Our proposed method can enhance the contrast of images without not only over-enhancement but also noise amplification. In the proposed method, an image is decomposed into illumination layer and reflectance layer based on the retinex theory, and lightness information of the illumination layer is adjusted. A shadow-up function is used for preventing over-enhancement. The proposed mapping function, designed by using a noise aware histogram, allows not only to enhance contrast of dark region, but also to avoid amplifying noise, even under strong noise environments.Comment: To appear in IWAIT-IFMIA 201

    Unsupervised Low Light Image Enhancement Using SNR-Aware Swin Transformer

    Full text link
    Image captured under low-light conditions presents unpleasing artifacts, which debilitate the performance of feature extraction for many upstream visual tasks. Low-light image enhancement aims at improving brightness and contrast, and further reducing noise that corrupts the visual quality. Recently, many image restoration methods based on Swin Transformer have been proposed and achieve impressive performance. However, On one hand, trivially employing Swin Transformer for low-light image enhancement would expose some artifacts, including over-exposure, brightness imbalance and noise corruption, etc. On the other hand, it is impractical to capture image pairs of low-light images and corresponding ground-truth, i.e. well-exposed image in same visual scene. In this paper, we propose a dual-branch network based on Swin Transformer, guided by a signal-to-noise ratio prior map which provides the spatial-varying information for low-light image enhancement. Moreover, we leverage unsupervised learning to construct the optimization objective based on Retinex model, to guide the training of proposed network. Experimental results demonstrate that the proposed model is competitive with the baseline models

    Empowering Low-Light Image Enhancer through Customized Learnable Priors

    Full text link
    Deep neural networks have achieved remarkable progress in enhancing low-light images by improving their brightness and eliminating noise. However, most existing methods construct end-to-end mapping networks heuristically, neglecting the intrinsic prior of image enhancement task and lacking transparency and interpretability. Although some unfolding solutions have been proposed to relieve these issues, they rely on proximal operator networks that deliver ambiguous and implicit priors. In this work, we propose a paradigm for low-light image enhancement that explores the potential of customized learnable priors to improve the transparency of the deep unfolding paradigm. Motivated by the powerful feature representation capability of Masked Autoencoder (MAE), we customize MAE-based illumination and noise priors and redevelop them from two perspectives: 1) \textbf{structure flow}: we train the MAE from a normal-light image to its illumination properties and then embed it into the proximal operator design of the unfolding architecture; and m2) \textbf{optimization flow}: we train MAE from a normal-light image to its gradient representation and then employ it as a regularization term to constrain noise in the model output. These designs improve the interpretability and representation capability of the model.Extensive experiments on multiple low-light image enhancement datasets demonstrate the superiority of our proposed paradigm over state-of-the-art methods. Code is available at https://github.com/zheng980629/CUE.Comment: Accepted by ICCV 202
    • …
    corecore