432 research outputs found

    Mobiilse värkvõrgu protsessihaldus

    Get PDF
    Värkvõrk, ehk Asjade Internet (Internet of Things, lüh IoT) edendab lahendusi nagu nn tark linn, kus meid igapäevaselt ümbritsevad objektid on ühendatud infosüsteemidega ja ka üksteisega. Selliseks näiteks võib olla teekatete seisukorra monitoorimissüsteem. Võrku ühendatud sõidukitelt (nt bussidelt) kogutakse videomaterjali, mida seejärel töödeldakse, et tuvastada löökauke või lume kogunemist. Tavaliselt hõlmab selline lahendus keeruka tsentraalse süsteemi ehitamist. Otsuste langetamiseks (nt milliseid sõidukeid parasjagu protsessi kaasata) vajab keskne süsteem pidevat ühendust kõigi IoT seadmetega. Seadmete hulga kasvades võib keskne lahendus aga muutuda pudelikaelaks. Selliste protsesside disaini, haldust, automatiseerimist ja seiret hõlbustavad märkimisväärselt äriprotsesside halduse (Business Process Management, lüh BPM) valdkonna standardid ja tööriistad. Paraku ei ole BPM tehnoloogiad koheselt kasutatavad uute paradigmadega nagu Udu- ja Servaarvutus, mis tuleviku värkvõrgu jaoks vajalikud on. Nende puhul liigub suur osa otsustustest ja arvutustest üksikutest andmekeskustest servavõrgu seadmetele, mis asuvad lõppkasutajatele ja IoT seadmetele lähemal. Videotöötlust võiks teostada mini-andmekeskustes, mis on paigaldatud üle linna, näiteks bussipeatustesse. Arvestades IoT seadmete üha suurenevat hulka, vähendab selline koormuse jaotamine vähendab riski, et tsentraalne andmekeskust ülekoormamist. Doktoritöö uurib, kuidas mobiilsusega seonduvaid IoT protsesse taoliselt ümber korraldada, kohanedes pidevalt muutlikule, liikuvate seadmetega täidetud servavõrgule. Nimelt on ühendused katkendlikud, mistõttu otsuste langetus ja planeerimine peavad arvestama muuhulgas mobiilseadmete liikumistrajektoore. Töö raames valminud prototüüpe testiti Android seadmetel ja simulatsioonides. Lisaks valmis tööriistakomplekt STEP-ONE, mis võimaldab teadlastel hõlpsalt simuleerida ja analüüsida taolisi probleeme erinevais realistlikes stsenaariumites nagu seda on tark linn.The Internet of Things (IoT) promotes solutions such as a smart city, where everyday objects connect with info systems and each other. One example is a road condition monitoring system, where connected vehicles, such as buses, capture video, which is then processed to detect potholes and snow build-up. Building such a solution typically involves establishing a complex centralised system. The centralised approach may become a bottleneck as the number of IoT devices keeps growing. It relies on constant connectivity to all involved devices to make decisions, such as which vehicles to involve in the process. Designing, automating, managing, and monitoring such processes can greatly be supported using the standards and software systems provided by the field of Business Process Management (BPM). However, BPM techniques are not directly applicable to new computing paradigms, such as Fog Computing and Edge Computing, on which the future of IoT relies. Here, a lot of decision-making and processing is moved from central data-centers to devices in the network edge, near the end-users and IoT sensors. For example, video could be processed in mini-datacenters deployed throughout the city, e.g., at bus stops. This load distribution reduces the risk of the ever-growing number of IoT devices overloading the data center. This thesis studies how to reorganise the process execution in this decentralised fashion, where processes must dynamically adapt to the volatile edge environment filled with moving devices. Namely, connectivity is intermittent, so decision-making and planning need to involve factors such as the movement trajectories of mobile devices. We examined this issue in simulations and with a prototype for Android smartphones. We also showcase the STEP-ONE toolset, allowing researchers to conveniently simulate and analyse these issues in different realistic scenarios, such as those in a smart city.  https://www.ester.ee/record=b552551

    Multisite adaptive computation offloading for mobile cloud applications

    Get PDF
    The sheer amount of mobile devices and their fast adaptability have contributed to the proliferation of modern advanced mobile applications. These applications have characteristics such as latency-critical and demand high availability. Also, these kinds of applications often require intensive computation resources and excessive energy consumption for processing, a mobile device has limited computation and energy capacity because of the physical size constraints. The heterogeneous mobile cloud environment consists of different computing resources such as remote cloud servers in faraway data centres, cloudlets whose goal is to bring the cloud closer to the users, and nearby mobile devices that can be utilised to offload mobile tasks. Heterogeneity in mobile devices and the different sites include software, hardware, and technology variations. Resource-constrained mobile devices can leverage the shared resource environment to offload their intensive tasks to conserve battery life and improve the overall application performance. However, with such a loosely coupled and mobile device dominating network, new challenges and problems such as how to seamlessly leverage mobile devices with all the offloading sites, how to simplify deploying runtime environment for serving offloading requests from mobile devices, how to identify which parts of the mobile application to offload and how to decide whether to offload them and how to select the most optimal candidate offloading site among others. To overcome the aforementioned challenges, this research work contributes the design and implementation of MAMoC, a loosely coupled end-to-end mobile computation offloading framework. Mobile applications can be adapted to the client library of the framework while the server components are deployed to the offloading sites for serving offloading requests. The evaluation of the offloading decision engine demonstrates the viability of the proposed solution for managing seamless and transparent offloading in distributed and dynamic mobile cloud environments. All the implemented components of this work are publicly available at the following URL: https://github.com/mamoc-repo

    A Low-Energy Fast Cyber Foraging Mechanism for Mobile Devices

    Full text link
    The ever increasing demands for using resource-constrained mobile devices for running more resource intensive applications nowadays has initiated the development of cyber foraging solutions that offload parts or whole computational intensive tasks to more powerful surrogate stationary computers and run them on behalf of mobile devices as required. The choice of proper mix of mobile devices and surrogates has remained an unresolved challenge though. In this paper, we propose a new decision-making mechanism for cyber foraging systems to select the best locations to run an application, based on context metrics such as the specifications of surrogates, the specifications of mobile devices, application specification, and communication network specification. Experimental results show faster response time and lower energy consumption of benched applications compared to when applications run wholly on mobile devices and when applications are offloaded to surrogates blindly for execution.Comment: 12 pages, 7 figures, International Journal of Wireless & Mobile Networks (IJWMN

    VirtFogSim: A parallel toolbox for dynamic energy-delay performance testing and optimization of 5G Mobile-Fog-Cloud virtualized platforms

    Get PDF
    It is expected that the pervasive deployment of multi-tier 5G-supported Mobile-Fog-Cloudtechnological computing platforms will constitute an effective means to support the real-time execution of future Internet applications by resource- and energy-limited mobile devices. Increasing interest in this emerging networking-computing technology demands the optimization and performance evaluation of several parts of the underlying infrastructures. However, field trials are challenging due to their operational costs, and in every case, the obtained results could be difficult to repeat and customize. These emergingMobile-Fog-Cloud ecosystems still lack, indeed, customizable software tools for the performance simulation of their computing-networking building blocks. Motivated by these considerations, in this contribution, we present VirtFogSim. It is aMATLAB-supported software toolbox that allows the dynamic joint optimization and tracking of the energy and delay performance of Mobile-Fog-Cloud systems for the execution of applications described by general Directed Application Graphs (DAGs). In a nutshell, the main peculiar features of the proposed VirtFogSim toolbox are that: (i) it allows the joint dynamic energy-aware optimization of the placement of the application tasks and the allocation of the needed computing-networking resources under hard constraints on acceptable overall execution times, (ii) it allows the repeatable and customizable simulation of the resulting energy-delay performance of the overall system; (iii) it allows the dynamic tracking of the performed resource allocation under time-varying operational environments, as those typically featuring mobile applications; (iv) it is equipped with a user-friendly Graphic User Interface (GUI) that supports a number of graphic formats for data rendering, and (v) itsMATLAB code is optimized for running atop multi-core parallel execution platforms. To check both the actual optimization and scalability capabilities of the VirtFogSim toolbox, a number of experimental setups featuring different use cases and operational environments are simulated, and their performances are compared

    EDOS: Edge Assisted Offloading System for Mobile Devices

    Get PDF
    Offloading resource-intensive jobs to the cloud and nearby users is a promising approach to enhance mobile devices. This paper investigates a hybrid offloading system that takes both infrastructure-based networks and Ad-hoc networks into the scope. Specifically, we propose EDOS, an edge assisted offloading system that consists of two major components, an Edge Assistant (EA) and Offload Agent (OA). EA runs on the routers/towers to manage registered remote cloud servers and local service providers and OA operates on the users’ devices to discover the services in proximity. We present the system with a suite of protocols to collect the potential service providers and algorithms to allocate tasks according to user-specified constraints. To evaluate EDOS, we prototype it on commercial mobile devices and evaluate it with both experiments on a small-scale testbed and simulations. The results show that EDOS is effective and efficient for offloading jobs

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    A game-theoretic approach to computation offloading in mobile cloud computing

    Get PDF
    We consider a three-tier architecture for mobile and pervasive computing scenarios, consisting of a local tier ofmobile nodes, a middle tier (cloudlets) of nearby computing nodes, typically located at the mobile nodes access points but characterized by a limited amount of resources, and a remote tier of distant cloud servers, which have practically infinite resources. This architecture has been proposed to get the benefits of computation offloading from mobile nodes to external servers while limiting the use of distant servers whose higher latency could negatively impact the user experience. For this architecture, we consider a usage scenario where no central authority exists and multiple non-cooperative mobile users share the limited computing resources of a close-by cloudlet and can selfishly decide to send their computations to any of the three tiers. We define a model to capture the users interaction and to investigate the effects of computation offloading on the users’ perceived performance. We formulate the problem as a generalized Nash equilibrium problem and show existence of an equilibrium.We present a distributed algorithm for the computation of an equilibrium which is tailored to the problem structure and is based on an in-depth analysis of the underlying equilibrium problem. Through numerical examples, we illustrate its behavior and the characteristics of the achieved equilibria
    corecore