1,986 research outputs found

    Improving Shape Depiction under Arbitrary Rendering

    Get PDF
    International audienceBased on the observation that shading conveys shape information through intensity gradients, we present a new technique called Radiance Scaling that modifies the classical shading equations to offer versatile shape depiction functionalities. It works by scaling reflected light intensities depending on both surface curvature and material characteristics. As a result, diffuse shading or highlight variations become correlated to surface feature variations, enhancing concavities and convexities. The first advantage of such an approach is that it produces satisfying results with any kind of material for direct and global illumination: we demonstrate results obtained with Phong and Ashikmin-Shirley BRDFs, Cartoon shading, sub-Lambertian materials, perfectly reflective or refractive objects. Another advantage is that there is no restriction to the choice of lighting environment: it works with a single light, area lights, and inter-reflections. Third, it may be adapted to enhance surface shape through the use of precomputed radiance data such as Ambient Occlusion, Prefiltered Environment Maps or Lit Spheres. Finally, our approach works in real-time on modern graphics hardware making it suitable for any interactive 3D visualization

    Observation of surface states on heavily indium doped SnTe(111), a superconducting topological crystalline insulator

    Get PDF
    The topological crystalline insulator tin telluride is known to host superconductivity when doped with indium (Sn1x_{1-x}Inx_{x}Te), and for low indium contents (x=0.04x=0.04) it is known that the topological surface states are preserved. Here we present the growth, characterization and angle resolved photoemission spectroscopy analysis of samples with much heavier In doping (up to x0.4x\approx0.4), a regime where the superconducting temperature is increased nearly fourfold. We demonstrate that despite strong p-type doping, Dirac-like surface states persist

    Highlight microdisparity for improved gloss depiction

    Get PDF

    Variations of the high-level Balmer line spectrum of the helium-strong star Sigma Orionis E

    Full text link
    Using the high-level Balmer lines and continuum, we trace the density structure of two magnetospheric disk segments of the prototypical Bp star sigma Ori E (B2p) as these segments occult portions of the star during the rotational cycle. High-resolution spectra of the Balmer lines >H9 and Balmer edge were obtained on seven nights in January-February 2007 at an average sampling of 0.01 cycles. We measured equivalent width variations due to the star occultations by two disk segments 0.4 cycles apart and constructed differential spectra of the migrations of the corresponding absorptions across the Balmer line profiles. We first estimated the rotational and magnetic obliquity angles. We then simulated the observed Balmer jump variation using the model atmosphere codes synspec/circus and evaluated the disk geometry and gas thermodynamics. We find that the two occultations are caused by two disk segments. The first of these transits quickly, indicating that the segment resides in a range of distances, perhaps 2.5-6R_star, from the star. The second consists of a more slowly moving segment situated closer to the surface and causing two semi-resolved absorbing maxima. During its transit this segment brushes across the star's "lower" limb. Judging from the line visibility up to H23-H24 during the occultations, both disk segments have mean densities near 10^{12} cm^{-3} and are opaque in the lines and continuum. They have semiheights less than 1/2 of a stellar radius, and their temperatures are near 10500K and 12000K, respectively. In all, the disks of Bp stars have a much more complicated geometry than has been anticipated, as evidenced by their (sometimes) non-coplanarity, de-centerness, and from star to star, differences in disk height.Comment: Accepted by Astron. Astrophys, 13 pages, 4 embedded figure

    Geometry-based shading for shape depiction Enhancement,

    Get PDF
    Recent works on Non-Photorealistic Rendering (NPR) show that object shape enhancement requires sophisticated effects such as: surface details detection and stylized shading. To date, some rendering techniques have been proposed to overcome this issue, but most of which are limited to correlate shape enhancement functionalities to surface feature variations. Therefore, this problem still persists especially in NPR. This paper is an attempt to address this problem by presenting a new approach for enhancing shape depiction of 3D objects in NPR. We first introduce a tweakable shape descriptor that offers versatile func- tionalities for describing the salient features of 3D objects. Then to enhance the classical shading models, we propose a new technique called Geometry-based Shading. This tech- nique controls reflected lighting intensities based on local geometry. Our approach works without any constraint on the choice of material or illumination. We demonstrate results obtained with Blinn-Phong shading, Gooch shading, and cartoon shading. These results prove that our approach produces more satisfying results compared with the results of pre- vious shape depiction techniques. Finally, our approach runs on modern graphics hardware in real time, which works efficiently with interactive 3D visualization

    Radiance Scaling for Versatile Surface Enhancement

    Get PDF
    International audienceWe present a novel technique called Radiance Scaling for the depiction of surface shape through shading. It adjusts reflected light intensities in a way dependent on both surface curvature and material characteristics. As a result, diffuse shading or highlight variations become correlated to surface feature variations, enhancing surface concavities and convexities. This approach is more versatile compared to previous methods. First, it produces satisfying results with any kind of material: we demonstrate results obtained with Phong and Ashikmin BRDFs, Cartoon shading, sub-Lambertian materials, and perfectly reflective or refractive objects. Second, it imposes no restriction on lighting environment: it does not require a dense sampling of lighting directions and works even with a single light. Third, it makes it possible to enhance surface shape through the use of precomputed radiance data such as Ambient Occlusion, Prefiltered Environment Maps or Lit Spheres. Our novel approach works in real-time on modern graphics hardware and is faster than previous techniques

    Local Light Alignment for Multi-Scale Shape Depiction

    Get PDF
    International audienceMotivated by recent findings in the field of visual perception, we present a novel approach for enhancing shape depiction and perception of surface details. We propose a shading-based technique that relies on locally adjusting the direction of light to account for the different components of materials. Our approach ensures congruence between shape and shading flows, leading to an effective enhancement of the perception of shape and details while impairing neither the lighting nor the appearance of materials. It is formulated in a general way allowing its use for multiple scales enhancement in real-time on the GPU, as well as in global illumination contexts. We also provide artists with fine control over the enhancement at each scale

    Sea surface velocities from visible and infrared multispectral atmospheric mapping sensor imagery

    Get PDF
    High resolution (100 m), sequential Multispectral Atmospheric Mapping Sensor (MAMS) images were used in a study to calculate advective surface velocities using the Maximum Cross Correlation (MCC) technique. Radiance and brightness temperature gradient magnitude images were formed from visible (0.48 microns) and infrared (11.12 microns) image pairs, respectively, of Chandeleur Sound, which is a shallow body of water northeast of the Mississippi delta, at 145546 GMT and 170701 GMT on 30 Mar. 1989. The gradient magnitude images enhanced the surface water feature boundaries, and a lower cutoff on the gradient magnitudes calculated allowed the undesirable sunglare and backscatter gradients in the visible images, and the water vapor absorption gradients in the infrared images, to be reduced in strength. Requiring high (greater than 0.4) maximum cross correlation coefficients and spatial coherence of the vector field aided in the selection of an optimal template size of 10 x 10 pixels (first image) and search limit of 20 pixels (second image) to use in the MCC technique. Use of these optimum input parameters to the MCC algorithm, and high correlation and spatial coherence filtering of the resulting velocity field from the MCC calculation yielded a clustered velocity distribution over the visible and infrared gradient images. The velocity field calculated from the visible gradient image pair agreed well with a subjective analysis of the motion, but the velocity field from the infrared gradient image pair did not. This was attributed to the changing shapes of the gradient features, their nonuniqueness, and large displacements relative to the mean distance between them. These problems implied a lower repeat time for the imagery was needed in order to improve the velocity field derived from gradient imagery. Suggestions are given for optimizing the repeat time of sequential imagery when using the MCC method for motion studies. Applying the MCC method to the infrared brightness temperature imagery yielded a velocity field which did agree with the subjective analysis of the motion and that derived from the visible gradient imagery. Differences between the visible and infrared derived velocities were 14.9 cm/s in speed and 56.7 degrees in direction. Both of these velocity fields also agreed well with the motion expected from considerations of the ocean bottom topography and wind and tidal forcing in the study area during the 2.175 hour time interval
    corecore