2,257 research outputs found

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Light subgraphs in graphs with average degree at most four

    Full text link
    A graph HH is said to be {\em light} in a family G\mathfrak{G} of graphs if at least one member of G\mathfrak{G} contains a copy of HH and there exists an integer λ(H,G)\lambda(H, \mathfrak{G}) such that each member GG of G\mathfrak{G} with a copy of HH also has a copy KK of HH such that degG(v)λ(H,G)\deg_{G}(v) \leq \lambda(H, \mathfrak{G}) for all vV(K)v \in V(K). In this paper, we study the light graphs in the class of graphs with small average degree, including the plane graphs with some restrictions on girth.Comment: 12 pages, 18 figure

    Spectral radius of finite and infinite planar graphs and of graphs of bounded genus

    Get PDF
    It is well known that the spectral radius of a tree whose maximum degree is DD cannot exceed 2D12\sqrt{D-1}. In this paper we derive similar bounds for arbitrary planar graphs and for graphs of bounded genus. It is proved that a the spectral radius ρ(G)\rho(G) of a planar graph GG of maximum vertex degree D4D\ge 4 satisfies Dρ(G)8D16+7.75\sqrt{D}\le \rho(G)\le \sqrt{8D-16}+7.75. This result is best possible up to the additive constant--we construct an (infinite) planar graph of maximum degree DD, whose spectral radius is 8D16\sqrt{8D-16}. This generalizes and improves several previous results and solves an open problem proposed by Tom Hayes. Similar bounds are derived for graphs of bounded genus. For every kk, these bounds can be improved by excluding K2,kK_{2,k} as a subgraph. In particular, the upper bound is strengthened for 5-connected graphs. All our results hold for finite as well as for infinite graphs. At the end we enhance the graph decomposition method introduced in the first part of the paper and apply it to tessellations of the hyperbolic plane. We derive bounds on the spectral radius that are close to the true value, and even in the simplest case of regular tessellations of type {p,q}\{p,q\} we derive an essential improvement over known results, obtaining exact estimates in the first order term and non-trivial estimates for the second order asymptotics

    On quadratic orbital networks

    Full text link
    These are some informal remarks on quadratic orbital networks over finite fields. We discuss connectivity, Euler characteristic, number of cliques, planarity, diameter and inductive dimension. We find a non-trivial disconnected graph for d=3. We prove that for d=1 generators, the Euler characteristic is always non-negative and for d=2 and large enough p the Euler characteristic is negative. While for d=1, all networks are planar, we suspect that for d larger or equal to 2 and large enough prime p, all networks are non-planar. As a consequence on bounds for the number of complete sub graphs of a fixed dimension, the inductive dimension of all these networks goes 1 as p goes to infinity.Comment: 13 figures 15 page

    Fixed-Parameter Algorithms for Rectilinear Steiner tree and Rectilinear Traveling Salesman Problem in the plane

    Full text link
    Given a set PP of nn points with their pairwise distances, the traveling salesman problem (TSP) asks for a shortest tour that visits each point exactly once. A TSP instance is rectilinear when the points lie in the plane and the distance considered between two points is the l1l_1 distance. In this paper, a fixed-parameter algorithm for the Rectilinear TSP is presented and relies on techniques for solving TSP on bounded-treewidth graphs. It proves that the problem can be solved in O(nh7h)O\left(nh7^h\right) where hnh \leq n denotes the number of horizontal lines containing the points of PP. The same technique can be directly applied to the problem of finding a shortest rectilinear Steiner tree that interconnects the points of PP providing a O(nh5h)O\left(nh5^h\right) time complexity. Both bounds improve over the best time bounds known for these problems.Comment: 24 pages, 13 figures, 6 table

    Packing Directed Circuits Quarter-Integrally

    Get PDF
    corecore