2,376 research outputs found

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data

    Probabilistic-based Feature Embedding of 4-D Light Fields for Compressive Imaging and Denoising

    Full text link
    The high-dimensional nature of the 4-D light field (LF) poses great challenges in achieving efficient and effective feature embedding, that severely impacts the performance of downstream tasks. To tackle this crucial issue, in contrast to existing methods with empirically-designed architectures, we propose a probabilistic-based feature embedding (PFE), which learns a feature embedding architecture by assembling various low-dimensional convolution patterns in a probability space for fully capturing spatial-angular information. Building upon the proposed PFE, we then leverage the intrinsic linear imaging model of the coded aperture camera to construct a cycle-consistent 4-D LF reconstruction network from coded measurements. Moreover, we incorporate PFE into an iterative optimization framework for 4-D LF denoising. Our extensive experiments demonstrate the significant superiority of our methods on both real-world and synthetic 4-D LF images, both quantitatively and qualitatively, when compared with state-of-the-art methods. The source code will be publicly available at https://github.com/lyuxianqiang/LFCA-CR-NET

    Parametrization of stochastic inputs using generative adversarial networks with application in geology

    Get PDF
    We investigate artificial neural networks as a parametrization tool for stochastic inputs in numerical simulations. We address parametrization from the point of view of emulating the data generating process, instead of explicitly constructing a parametric form to preserve predefined statistics of the data. This is done by training a neural network to generate samples from the data distribution using a recent deep learning technique called generative adversarial networks. By emulating the data generating process, the relevant statistics of the data are replicated. The method is assessed in subsurface flow problems, where effective parametrization of underground properties such as permeability is important due to the high dimensionality and presence of high spatial correlations. We experiment with realizations of binary channelized subsurface permeability and perform uncertainty quantification and parameter estimation. Results show that the parametrization using generative adversarial networks is very effective in preserving visual realism as well as high order statistics of the flow responses, while achieving a dimensionality reduction of two orders of magnitude
    • …
    corecore