7,016 research outputs found

    Light Field Completion Using Focal Stack Propagation

    Get PDF
    Both light field photography and focal stack photography are rapidly becoming more accessible with Lytro’s commercial light field cameras and the ever increasing processing power of mobile devices. Light field photography offers the ability of post capturing perspective changes and digital refocusing, but little is available in the way of post-production editing of light field images. We present a first approach for interactive content aware completion of light fields and focal stacks, allowing for the removal of foreground or background elements from a scene

    The Application of Preconditioned Alternating Direction Method of Multipliers in Depth from Focal Stack

    Get PDF
    Post capture refocusing effect in smartphone cameras is achievable by using focal stacks. However, the accuracy of this effect is totally dependent on the combination of the depth layers in the stack. The accuracy of the extended depth of field effect in this application can be improved significantly by computing an accurate depth map which has been an open issue for decades. To tackle this issue, in this paper, a framework is proposed based on Preconditioned Alternating Direction Method of Multipliers (PADMM) for depth from the focal stack and synthetic defocus application. In addition to its ability to provide high structural accuracy and occlusion handling, the optimization function of the proposed method can, in fact, converge faster and better than state of the art methods. The evaluation has been done on 21 sets of focal stacks and the optimization function has been compared against 5 other methods. Preliminary results indicate that the proposed method has a better performance in terms of structural accuracy and optimization in comparison to the current state of the art methods.Comment: 15 pages, 8 figure

    Laser satellite-tracking system Progress report, 1 Feb. - 1 Jul. 1968

    Get PDF
    Description and test evaluation of prototype laser satellite tracking syste

    Application for light field inpainting

    Get PDF
    Light Field (LF) imaging is a multimedia technology that can provide more immersive experience when visualizing a multimedia content with higher levels of realism compared to conventional imaging technologies. This technology is mainly promising for Virtual Reality (VR) since it displays real-world scenes in a way that users can experience the captured scenes in every position and every angle, due to its 4-dimensional LF representation. For these reasons, LF is a fast-growing technology, with so many topics to explore, being the LF inpainting the one that was explored in this dissertation. Image inpainting is an editing technique that allows synthesizing alternative content to fill in holes in an image. It is commonly used to fill missing parts in a scene and restore damaged images such that the modifications are correct and visually realistic. Applying traditional 2D inpainting techniques straightforwardly to LFs is very unlikely to result in a consistent inpainting in its all 4 dimensions. Usually, to inpaint a 4D LF content, 2D inpainting algorithms are used to inpaint a particular point of view and then 4D inpainting propagation algorithms propagate the inpainted result for the whole 4D LF data. Based on this idea of 4D inpainting propagation, some 4D LF inpainting techniques have been recently proposed in the literature. Therefore, this dissertation proposes to design and implement an LF inpainting application that can be used by the public that desire to work in this field and/or explore and edit LFs.Campos de luz é uma tecnologia multimédia que fornece uma experiência mais imersiva ao visualizar conteúdo multimédia com níveis mais altos de realismo, comparando a tecnologias convencionais de imagem. Esta tecnologia é promissora, principalmente para Realidade Virtual, pois exibe cenas capturadas do mundo real de forma que utilizadores as possam experimentar em todas as posições e ângulos, devido à sua representação em 4 dimensões. Por isso, esta é tecnologia em rápido crescimento, com tantos tópicos para explorar, sendo o inpainting o explorado nesta dissertação. Inpainting de imagens é uma técnica de edição, permitindo sintetizar conteúdo alternativo para preencher lacunas numa imagem. Comumente usado para preencher partes que faltam numa cena e restaurar imagens danificadas, de forma que as modificações sejam corretas e visualmente realistas. É muito improvável que aplicar técnicas tradicionais de inpainting 2D diretamente a campos de luz resulte num inpainting consistente em todas as suas 4 dimensões. Normalmente, para fazer inpainting num conteúdo 4D de campos de luz, os algoritmos de inpainting 2D são usados para fazer inpainting de um ponto de vista específico e, seguidamente, os algoritmos de propagação de inpainting 4D propagam o resultado do inpainting para todos os dados do campo de luz 4D. Com base nessa ideia de propagação de inpainting 4D, algumas técnicas foram recentemente propostas na literatura. Assim, esta dissertação propõe-se a conceber e implementar uma aplicação de inpainting de campos de luz que possa ser utilizada pelo público que pretenda trabalhar nesta área e/ou explorar e editar campos de luz

    Towards Precision LSST Weak-Lensing Measurement - I: Impacts of Atmospheric Turbulence and Optical Aberration

    Full text link
    The weak-lensing science of the LSST project drives the need to carefully model and separate the instrumental artifacts from the intrinsic lensing signal. The dominant source of the systematics for all ground based telescopes is the spatial correlation of the PSF modulated by both atmospheric turbulence and optical aberrations. In this paper, we present a full FOV simulation of the LSST images by modeling both the atmosphere and the telescope optics with the most current data for the telescope specifications and the environment. To simulate the effects of atmospheric turbulence, we generated six-layer phase screens with the parameters estimated from the on-site measurements. For the optics, we combined the ray-tracing tool ZEMAX and our simulated focal plane data to introduce realistic aberrations and focal plane height fluctuations. Although this expected flatness deviation for LSST is small compared with that of other existing cameras, the fast f-ratio of the LSST optics makes this focal plane flatness variation and the resulting PSF discontinuities across the CCD boundaries significant challenges in our removal of the systematics. We resolve this complication by performing PCA CCD-by-CCD, and interpolating the basis functions using conventional polynomials. We demonstrate that this PSF correction scheme reduces the residual PSF ellipticity correlation below 10^-7 over the cosmologically interesting scale. From a null test using HST/UDF galaxy images without input shear, we verify that the amplitude of the galaxy ellipticity correlation function, after the PSF correction, is consistent with the shot noise set by the finite number of objects. Therefore, we conclude that the current optical design and specification for the accuracy in the focal plane assembly are sufficient to enable the control of the PSF systematics required for weak-lensing science with the LSST.Comment: Accepted to PASP. High-resolution version is available at http://dls.physics.ucdavis.edu/~mkjee/LSST_weak_lensing_simulation.pd

    Fabrication and integration of nanostructured optical devices

    Get PDF
    The main goal of this thesis is the numerical and experimental verification of the concept of nanostructured micro-optical elements integrated into an optical fibre. The elements are fabricated with a stack and draw technique. This technology, based on the wellknown method of photonic crystal fibres (PCFs) production, allows the fabrication of Nanostructured Gradient Index (nGRIN) microlenses and axicons with individual nanorods with diameter of 100-300nm. The necessary parameters of materials used in stack and draw method are described and two glasses are chosen for the nanostructured elements fabrication. The procedure of synthesis of clear and doped Poly(methyl methacrylate) (PMMA) is introduced, which will allow using PMMA in the future in stack and draw technique. Numerical simulations of a Gaussian beam focusing nGRIN microlenses attached to optical fibres are performed using a FFT BPM method. This shows that nGRIN microlenses can be described using the effective refractive index also in the case of the optical fibre illumination. The procedure of fabricating, cutting and polishing of elements 125 um in diameter and 20-60 um long is introduced and explained. Both simulation and experimental results show that the fabricated nanostructured lenses and axicons focus light for the fibre source with wavelength 1550nm

    A detector interferometric calibration experiment for high precision astrometry

    Full text link
    Context: Exoplanet science has made staggering progress in the last two decades, due to the relentless exploration of new detection methods and refinement of existing ones. Yet astrometry offers a unique and untapped potential of discovery of habitable-zone low-mass planets around all the solar-like stars of the solar neighborhood. To fulfill this goal, astrometry must be paired with high precision calibration of the detector. Aims: We present a way to calibrate a detector for high accuracy astrometry. An experimental testbed combining an astrometric simulator and an interferometric calibration system is used to validate both the hardware needed for the calibration and the signal processing methods. The objective is an accuracy of 5e-6 pixel on the location of a Nyquist sampled polychromatic point spread function. Methods: The interferometric calibration system produced modulated Young fringes on the detector. The Young fringes were parametrized as products of time and space dependent functions, based on various pixel parameters. The minimization of func- tion parameters was done iteratively, until convergence was obtained, revealing the pixel information needed for the calibration of astrometric measurements. Results: The calibration system yielded the pixel positions to an accuracy estimated at 4e-4 pixel. After including the pixel position information, an astrometric accuracy of 6e-5 pixel was obtained, for a PSF motion over more than five pixels. In the static mode (small jitter motion of less than 1e-3 pixel), a photon noise limited precision of 3e-5 pixel was reached
    corecore