56,826 research outputs found

    Hand gesture recognition based on signals cross-correlation

    Get PDF

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    CardioCam: Leveraging Camera on Mobile Devices to Verify Users While Their Heart is Pumping

    Get PDF
    With the increasing prevalence of mobile and IoT devices (e.g., smartphones, tablets, smart-home appliances), massive private and sensitive information are stored on these devices. To prevent unauthorized access on these devices, existing user verification solutions either rely on the complexity of user-defined secrets (e.g., password) or resort to specialized biometric sensors (e.g., fingerprint reader), but the users may still suffer from various attacks, such as password theft, shoulder surfing, smudge, and forged biometrics attacks. In this paper, we propose, CardioCam, a low-cost, general, hard-to-forge user verification system leveraging the unique cardiac biometrics extracted from the readily available built-in cameras in mobile and IoT devices. We demonstrate that the unique cardiac features can be extracted from the cardiac motion patterns in fingertips, by pressing on the built-in camera. To mitigate the impacts of various ambient lighting conditions and human movements under practical scenarios, CardioCam develops a gradient-based technique to optimize the camera configuration, and dynamically selects the most sensitive pixels in a camera frame to extract reliable cardiac motion patterns. Furthermore, the morphological characteristic analysis is deployed to derive user-specific cardiac features, and a feature transformation scheme grounded on Principle Component Analysis (PCA) is developed to enhance the robustness of cardiac biometrics for effective user verification. With the prototyped system, extensive experiments involving 25 subjects are conducted to demonstrate that CardioCam can achieve effective and reliable user verification with over 99% average true positive rate (TPR) while maintaining the false positive rate (FPR) as low as 4%

    The nature of the Galactic Center source IRS 13 revealed by high spatial resolution in the infrared

    Get PDF
    High spatial resolution observations in the 1 to 3.5 micron region of the Galactic Center source known historically as IRS 13 are presented. They include ground-based adaptive optics images in the H, Kp (2.12/0.4 micron) and L bands, NICMOS data in filters between 1.1 and 2.2 micron, and integral field spectroscopic data from BEAR, an Imaging FTS, in the HeI 2.06 micron and the BrÎł\gamma line regions. Analysis of all these data provides a completely new picture of the main component, IRS 13E, which appears as a cluster of seven individual stars within a projected diameter of ~0.5'' (0.02 pc). The brightest sources, 13E1, 13E2, 13E3 (a binary), and 13E4, are all massive stars, 13E1 a blue object, with no detected emission line while 13E2 and 13E4 are high-mass emission line stars. 13E2 is at the WR stage and 13E4 a massive O-type star. 13E3A and B are extremely red objects, proposed as other examples of dusty WR stars. All these sources have a common westward proper motion. 13E5, is a red source similar to 13E3A/B. This concentration of comoving massive hot stars, IRS 13E, is proposed as the remaining core of a massive star cluster, which could harbor an intermediate-mass black hole (IMBH) of ~1300 M_sol. This detection plays in favor of a scenario in which the helium stars and the other hot stars in the central pc originate from the stripping of a massive cluster formed several tens of pc from the center. The detection of a discrete X-ray emission (Baganoff et al. 2003) at the IRS~13 position is examined in this context.Comment: 14 pages, 6 figures (3 in color), LaTeX2e, accepted in A&

    The application of LANDSAT-1 imagery for monitoring strip mines in the new river watershed in northeast Tennessee, part 2

    Get PDF
    The author has identified the following significant results. LANDSAT imagery and supplementary aircraft photography of the New River drainage basin were subjected to a multilevel analysis using conventional photointerpretation methods, densitometric techniques, multispectral analysis, and statistical tests to determine the accuracy of LANDSAT-1 imagery for measuring strip mines of common size. The LANDSAT areas were compared with low altitude measurements. The average accuracy over all the mined land sample areas mapped from LANDSAT-1 was 90%. The discrimination of strip mine subcategories is somewhat limited on LANDSAT imagery. A mine site, whether active or inactive, can be inferred by lack of vegetation, by shape, or image texture. Mine ponds are difficult or impossible to detect because of their small size and turbidity. Unless bordered and contrasted with vegetation, haulage roads are impossible to delineate. Preparation plants and refuge areas are not detectable. Density slicing of LANDSAT band 7 proved most useful in the detection of reclamation progress within the mined areas. For most state requirements for year-round monitoring of surface mined land, LANDSAT is of limited value. However, for periodic updating of regional surface maps, LANDSAT may provide sufficient accuracies for some users

    Automatic manhole extraction from MMS data to update basemaps

    Get PDF
    Basemaps are the main resource used in urban planning, building and infrastructure asset management. Therefore, they must be accurate and up to date to better serve citizens, contractors, property owners and town planning departments. Traditionally, they have been updated by aerial photogrammetry, but this is not always possible and alternatives need to be sought. In such cases, a useful option for large scales is the mobile mapping system (MMS). However, automatic extraction from MMS point clouds is limited by the complexity of the urban environment. Therefore, the influence of the urban pattern is analysed in three zones with varied urban characteristics: areas with high buildings, open areas, and areas with a low level of urbanization. In these areas, the capture and automatic extraction of 3D urban elements is performed using commercial software, which is useful for some elements but not for manholes. The objective of this study is to establish a methodology for extracting manholes automatically and completing hidden buildings' corners, in order to update urban basemaps. Shape and intensity are the main detection parameters for manholes, whereas additional information from satellite image Quickbird is used to complete the buildings. The worst rate of detection for all the extracted urban elements was found in areas of high buildings. Finally, the article analyses the computing cost for manhole extraction, and the economic cost and time consume of the entire process, including the proposed methodolgy using an MMS point cloud and the traditional survey in this case.Peer ReviewedPostprint (updated version

    Exploratory analysis of excitation-emission matrix fluorescence spectra with self-organizing maps as a basis for determination of organic matter removal efficiency at water treatment works

    Get PDF
    In the paper, the self-organizing map (SOM) was employed for the exploratory analysis of fluorescence excitation-emission data characterizing organic matter removal efficiency at 16 water treatment works in the UK. Fluorescence spectroscopy was used to assess organic matter removal efficiency between raw and partially treated (clarified) water to provide an indication of the potential for disinfection by-products formation. Fluorescence spectroscopy was utilized to evaluate quantitative and qualitative properties of organic matter removal. However, the substantial amount of fluorescence data generated impeded the interpretation process. Therefore a robust SOM technique was used to examine the fluorescence data and to reveal patterns in data distribution and correlations between organic matter properties and fluorescence variables. It was found that the SOM provided a good discrimination between water treatment sites on the base of spectral properties of organic matter. The distances between the units of the SOM map were indicative of the similarity of the fluorescence samples and thus demonstrated the relative changes in organic matter content between raw and clarified water. The higher efficiency of organic matter removal was demonstrated for the larger distances between raw and clarified samples on the map. It was also shown that organic matter removal was highly dependent on the raw water fluorescence properties, with higher efficiencies for higher emission wavelengths in visible and UV humic-like fluorescence centers
    • …
    corecore