57 research outputs found

    An Embedding of the BSS Model of Computation in Light Affine Lambda-Calculus

    Full text link
    This paper brings together two lines of research: implicit characterization of complexity classes by Linear Logic (LL) on the one hand, and computation over an arbitrary ring in the Blum-Shub-Smale (BSS) model on the other. Given a fixed ring structure K we define an extension of Terui's light affine lambda-calculus typed in LAL (Light Affine Logic) with a basic type for K. We show that this calculus captures the polynomial time function class FP(K): every typed term can be evaluated in polynomial time and conversely every polynomial time BSS machine over K can be simulated in this calculus.Comment: 11 pages. A preliminary version appeared as Research Report IAC CNR Roma, N.57 (11/2004), november 200

    Light types for polynomial time computation in lambda-calculus

    Full text link
    We propose a new type system for lambda-calculus ensuring that well-typed programs can be executed in polynomial time: Dual light affine logic (DLAL). DLAL has a simple type language with a linear and an intuitionistic type arrow, and one modality. It corresponds to a fragment of Light affine logic (LAL). We show that contrarily to LAL, DLAL ensures good properties on lambda-terms: subject reduction is satisfied and a well-typed term admits a polynomial bound on the reduction by any strategy. We establish that as LAL, DLAL allows to represent all polytime functions. Finally we give a type inference procedure for propositional DLAL.Comment: 20 pages (including 10 pages of appendix). (revised version; in particular section 5 has been modified). A short version is to appear in the proceedings of the conference LICS 2004 (IEEE Computer Society Press

    A type system for PSPACE derived from light linear logic

    Full text link
    We present a polymorphic type system for lambda calculus ensuring that well-typed programs can be executed in polynomial space: dual light affine logic with booleans (DLALB). To build DLALB we start from DLAL (which has a simple type language with a linear and an intuitionistic type arrow, as well as one modality) which characterizes FPTIME functions. In order to extend its expressiveness we add two boolean constants and a conditional constructor in the same way as with the system STAB. We show that the value of a well-typed term can be computed by an alternating machine in polynomial time, thus such a term represents a program of PSPACE (given that PSPACE = APTIME). We also prove that all polynomial space decision functions can be represented in DLALB. Therefore DLALB characterizes PSPACE predicates.Comment: In Proceedings DICE 2011, arXiv:1201.034

    Light Logics and the Call-by-Value Lambda Calculus

    Full text link
    The so-called light logics have been introduced as logical systems enjoying quite remarkable normalization properties. Designing a type assignment system for pure lambda calculus from these logics, however, is problematic. In this paper we show that shifting from usual call-by-name to call-by-value lambda calculus allows regaining strong connections with the underlying logic. This will be done in the context of Elementary Affine Logic (EAL), designing a type system in natural deduction style assigning EAL formulae to lambda terms.Comment: 28 page

    Linear Logic by Levels and Bounded Time Complexity

    Get PDF
    We give a new characterization of elementary and deterministic polynomial time computation in linear logic through the proofs-as-programs correspondence. Girard's seminal results, concerning elementary and light linear logic, achieve this characterization by enforcing a stratification principle on proofs, using the notion of depth in proof nets. Here, we propose a more general form of stratification, based on inducing levels in proof nets by means of indexes, which allows us to extend Girard's systems while keeping the same complexity properties. In particular, it turns out that Girard's systems can be recovered by forcing depth and level to coincide. A consequence of the higher flexibility of levels with respect to depth is the absence of boxes for handling the paragraph modality. We use this fact to propose a variant of our polytime system in which the paragraph modality is only allowed on atoms, and which may thus serve as a basis for developing lambda-calculus type assignment systems with more efficient typing algorithms than existing ones.Comment: 63 pages. To appear in Theoretical Computer Science. This version corrects minor fonts problems from v

    Programming Languages and Systems

    Full text link

    Elementary linear logic revisited for polynomial time and an exponential time hierarchy (extended version)

    Get PDF
    Nombre de pages: 20. Une version courte de ce travail est à paraître dans les actes de: Asian Symposium on Programming Languages and Systems (APLAS 2011).Elementary linear logic is a simple variant of linear logic, introduced by Girard and which characterizes in the proofs-as-programs approach the class of elementary functions (computable in time bounded by a tower of exponentials of fixed height). Our goal here is to show that despite its simplicity, elementary linear logic can nevertheless be used as a common framework to characterize the different levels of a hierarchy of deterministic time complexity classes, within elementary time. We consider a variant of this logic with type fixpoints and weakening. By selecting specific types we then characterize the class P of polynomial time predicates and more generally the hierarchy of classes k-EXP, for k>=0, where k-EXP is the union of DTIME(2_k^{n^i}), for i>=1
    • …
    corecore