12,790 research outputs found

    Lifting scheme on graphs with application to image representation

    Full text link
    International audienceWe propose a new multiscale transform for scalar functions defined on the vertex set of a general undirected weighted graph. The transform is based on an adaption of the lifting scheme to graphs. One of the difficulties in applying directly the lifting scheme to graphs is the partitioning of the vertex set. We follow a recent greedy approach and extend it to a multilevel transform. We carefully examine each step of the algorithm, in particular its effect on the underlying basis. We finally investigate the use of the proposed transform to image representation by computing M-term nonlinear approximation errors. We provide a comparison with standard orthogonal and biorthogonal wavelet transforms

    Lifting matroid divisors on tropical curves

    Get PDF
    Tropical geometry gives a bound on the ranks of divisors on curves in terms of the combinatorics of the dual graph of a degeneration. We show that for a family of examples, curves realizing this bound might only exist over certain characteristics or over certain fields of definition. Our examples also apply to the theory of metrized complexes and weighted graphs. These examples arise by relating the lifting problem to matroid realizability. We also give a proof of Mn\"ev universality with explicit bounds on the size of the matroid, which may be of independent interest.Comment: 27 pages, 7 figures, final submitted version: several proofs clarified and various minor change

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Lossy Kernelization

    Get PDF
    In this paper we propose a new framework for analyzing the performance of preprocessing algorithms. Our framework builds on the notion of kernelization from parameterized complexity. However, as opposed to the original notion of kernelization, our definitions combine well with approximation algorithms and heuristics. The key new definition is that of a polynomial size α\alpha-approximate kernel. Loosely speaking, a polynomial size α\alpha-approximate kernel is a polynomial time pre-processing algorithm that takes as input an instance (I,k)(I,k) to a parameterized problem, and outputs another instance (I′,k′)(I',k') to the same problem, such that ∣I′∣+k′≤kO(1)|I'|+k' \leq k^{O(1)}. Additionally, for every c≥1c \geq 1, a cc-approximate solution s′s' to the pre-processed instance (I′,k′)(I',k') can be turned in polynomial time into a (c⋅α)(c \cdot \alpha)-approximate solution ss to the original instance (I,k)(I,k). Our main technical contribution are α\alpha-approximate kernels of polynomial size for three problems, namely Connected Vertex Cover, Disjoint Cycle Packing and Disjoint Factors. These problems are known not to admit any polynomial size kernels unless NP⊆coNP/polyNP \subseteq coNP/poly. Our approximate kernels simultaneously beat both the lower bounds on the (normal) kernel size, and the hardness of approximation lower bounds for all three problems. On the negative side we prove that Longest Path parameterized by the length of the path and Set Cover parameterized by the universe size do not admit even an α\alpha-approximate kernel of polynomial size, for any α≥1\alpha \geq 1, unless NP⊆coNP/polyNP \subseteq coNP/poly. In order to prove this lower bound we need to combine in a non-trivial way the techniques used for showing kernelization lower bounds with the methods for showing hardness of approximationComment: 58 pages. Version 2 contain new results: PSAKS for Cycle Packing and approximate kernel lower bounds for Set Cover and Hitting Set parameterized by universe siz

    Hyperplane Arrangements and Locality-Sensitive Hashing with Lift

    Full text link
    Locality-sensitive hashing converts high-dimensional feature vectors, such as image and speech, into bit arrays and allows high-speed similarity calculation with the Hamming distance. There is a hashing scheme that maps feature vectors to bit arrays depending on the signs of the inner products between feature vectors and the normal vectors of hyperplanes placed in the feature space. This hashing can be seen as a discretization of the feature space by hyperplanes. If labels for data are given, one can determine the hyperplanes by using learning algorithms. However, many proposed learning methods do not consider the hyperplanes' offsets. Not doing so decreases the number of partitioned regions, and the correlation between Hamming distances and Euclidean distances becomes small. In this paper, we propose a lift map that converts learning algorithms without the offsets to the ones that take into account the offsets. With this method, the learning methods without the offsets give the discretizations of spaces as if it takes into account the offsets. For the proposed method, we input several high-dimensional feature data sets and studied the relationship between the statistical characteristics of data, the number of hyperplanes, and the effect of the proposed method.Comment: 9 pages, 7 figure
    • …
    corecore