319 research outputs found

    Lifted Bayesian filtering in multi-entity systems

    Get PDF
    This thesis focuses on Bayesian filtering for systems that consist of multiple, interacting entites (e.g. agents or objects), which can naturally be described by Multiset Rewriting Systems (MRSs). The main insight is that the state space that is underling an MRS exhibits a certain symmetry, which can be exploited to increase inference efficiency. We provide an efficient, lifted filtering algorithm, which is able to achieve a factorial reduction in space and time complexity, compared to conventional, ground filtering.Diese Arbeit betrachtet Bayes'sche Filter in Systemen, die aus mehreren, interagierenden Entitäten (z.B. Agenten oder Objekten) bestehen. Die Systemdynamik solcher Systeme kann auf natürliche Art durch Multiset Rewriting Systems (MRS) spezifiziert werden. Die wesentliche Erkenntnis ist, dass der Zustandraum Symmetrien aufweist, die ausgenutzt werden können, um die Effizienz der Inferenz zu erhöhen. Wir führen einen effizienten, gelifteten Filter-Algorithmus ein, dessen Zeit- und Platzkomplexität gegenüber dem grundierten Algorithmus um einen faktoriellen Faktor reduziert ist

    Logic, Probability and Action: A Situation Calculus Perspective

    Get PDF
    The unification of logic and probability is a long-standing concern in AI, and more generally, in the philosophy of science. In essence, logic provides an easy way to specify properties that must hold in every possible world, and probability allows us to further quantify the weight and ratio of the worlds that must satisfy a property. To that end, numerous developments have been undertaken, culminating in proposals such as probabilistic relational models. While this progress has been notable, a general-purpose first-order knowledge representation language to reason about probabilities and dynamics, including in continuous settings, is still to emerge. In this paper, we survey recent results pertaining to the integration of logic, probability and actions in the situation calculus, which is arguably one of the oldest and most well-known formalisms. We then explore reduction theorems and programming interfaces for the language. These results are motivated in the context of cognitive robotics (as envisioned by Reiter and his colleagues) for the sake of concreteness. Overall, the advantage of proving results for such a general language is that it becomes possible to adapt them to any special-purpose fragment, including but not limited to popular probabilistic relational models

    Graphical Models and Symmetries : Loopy Belief Propagation Approaches

    Get PDF
    Whenever a person or an automated system has to reason in uncertain domains, probability theory is necessary. Probabilistic graphical models allow us to build statistical models that capture complex dependencies between random variables. Inference in these models, however, can easily become intractable. Typical ways to address this scaling issue are inference by approximate message-passing, stochastic gradients, and MapReduce, among others. Exploiting the symmetries of graphical models, however, has not yet been considered for scaling statistical machine learning applications. One instance of graphical models that are inherently symmetric are statistical relational models. These have recently gained attraction within the machine learning and AI communities and combine probability theory with first-order logic, thereby allowing for an efficient representation of structured relational domains. The provided formalisms to compactly represent complex real-world domains enable us to effectively describe large problem instances. Inference within and training of graphical models, however, have not been able to keep pace with the increased representational power. This thesis tackles two major aspects of graphical models and shows that both inference and training can indeed benefit from exploiting symmetries. It first deals with efficient inference exploiting symmetries in graphical models for various query types. We introduce lifted loopy belief propagation (lifted LBP), the first lifted parallel inference approach for relational as well as propositional graphical models. Lifted LBP can effectively speed up marginal inference, but cannot straightforwardly be applied to other types of queries. Thus we also demonstrate efficient lifted algorithms for MAP inference and higher order marginals, as well as the efficient handling of multiple inference tasks. Then we turn to the training of graphical models and introduce the first lifted online training for relational models. Our training procedure and the MapReduce lifting for loopy belief propagation combine lifting with the traditional statistical approaches to scaling, thereby bridging the gap between statistical relational learning and traditional statistical machine learning

    Differentiable world programs

    Full text link
    L'intelligence artificielle (IA) moderne a ouvert de nouvelles perspectives prometteuses pour la création de robots intelligents. En particulier, les architectures d'apprentissage basées sur le gradient (réseaux neuronaux profonds) ont considérablement amélioré la compréhension des scènes 3D en termes de perception, de raisonnement et d'action. Cependant, ces progrès ont affaibli l'attrait de nombreuses techniques ``classiques'' développées au cours des dernières décennies. Nous postulons qu'un mélange de méthodes ``classiques'' et ``apprises'' est la voie la plus prometteuse pour développer des modèles du monde flexibles, interprétables et exploitables : une nécessité pour les agents intelligents incorporés. La question centrale de cette thèse est : ``Quelle est la manière idéale de combiner les techniques classiques avec des architectures d'apprentissage basées sur le gradient pour une compréhension riche du monde 3D ?''. Cette vision ouvre la voie à une multitude d'applications qui ont un impact fondamental sur la façon dont les agents physiques perçoivent et interagissent avec leur environnement. Cette thèse, appelée ``programmes différentiables pour modèler l'environnement'', unifie les efforts de plusieurs domaines étroitement liés mais actuellement disjoints, notamment la robotique, la vision par ordinateur, l'infographie et l'IA. Ma première contribution---gradSLAM--- est un système de localisation et de cartographie simultanées (SLAM) dense et entièrement différentiable. En permettant le calcul du gradient à travers des composants autrement non différentiables tels que l'optimisation non linéaire par moindres carrés, le raycasting, l'odométrie visuelle et la cartographie dense, gradSLAM ouvre de nouvelles voies pour intégrer la reconstruction 3D classique et l'apprentissage profond. Ma deuxième contribution - taskography - propose une sparsification conditionnée par la tâche de grandes scènes 3D encodées sous forme de graphes de scènes 3D. Cela permet aux planificateurs classiques d'égaler (et de surpasser) les planificateurs de pointe basés sur l'apprentissage en concentrant le calcul sur les attributs de la scène pertinents pour la tâche. Ma troisième et dernière contribution---gradSim--- est un simulateur entièrement différentiable qui combine des moteurs physiques et graphiques différentiables pour permettre l'estimation des paramètres physiques et le contrôle visuomoteur, uniquement à partir de vidéos ou d'une image fixe.Modern artificial intelligence (AI) has created exciting new opportunities for building intelligent robots. In particular, gradient-based learning architectures (deep neural networks) have tremendously improved 3D scene understanding in terms of perception, reasoning, and action. However, these advancements have undermined many ``classical'' techniques developed over the last few decades. We postulate that a blend of ``classical'' and ``learned'' methods is the most promising path to developing flexible, interpretable, and actionable models of the world: a necessity for intelligent embodied agents. ``What is the ideal way to combine classical techniques with gradient-based learning architectures for a rich understanding of the 3D world?'' is the central question in this dissertation. This understanding enables a multitude of applications that fundamentally impact how embodied agents perceive and interact with their environment. This dissertation, dubbed ``differentiable world programs'', unifies efforts from multiple closely-related but currently-disjoint fields including robotics, computer vision, computer graphics, and AI. Our first contribution---gradSLAM---is a fully differentiable dense simultaneous localization and mapping (SLAM) system. By enabling gradient computation through otherwise non-differentiable components such as nonlinear least squares optimization, ray casting, visual odometry, and dense mapping, gradSLAM opens up new avenues for integrating classical 3D reconstruction and deep learning. Our second contribution---taskography---proposes a task-conditioned sparsification of large 3D scenes encoded as 3D scene graphs. This enables classical planners to match (and surpass) state-of-the-art learning-based planners by focusing computation on task-relevant scene attributes. Our third and final contribution---gradSim---is a fully differentiable simulator that composes differentiable physics and graphics engines to enable physical parameter estimation and visuomotor control, solely from videos or a still image
    • …
    corecore