388 research outputs found

    Modal Kleene algebra and applications - a survey

    Get PDF
    Modal Kleene algebras are Kleene algebras with forward and backward modal operators defined via domain and codomain operations. They provide a concise and convenient algebraic framework that subsumes various other calculi and allows treating quite a variety of areas. We survey the basic theory and some prominent applications. These include, on the system semantics side, Hoare logic and PDL (Propositional Dynamic Logic), wp calculus and predicate transformer semantics, temporal logics and termination analysis of rewrite and state transition systems. On the derivation side we apply the framework to game analysis and greedy-like algorithms

    Modal Kleene Algebra and Partial Correctness

    Get PDF
    Modal Kleene algebras are relatives of dynamic logics that support program construction and verification by equational reasoning. We describe their application in implementing versatile program correctness components in interactive theorem provers such as Isabelle/HOL. Starting from a weakest precondition based component with a simple relational store model, we show how variants for Hoare logic, strongest postconditions and program refinement can be built in a principled way. Modularity of the approach is demonstrated by variants that capture program termination and recursion, memory models for programs with pointers, and program trace semantics.Engineering and Physical Sciences Research Council (Grant ID: REMS: Rigorous Engineering for Mainstream Systems, EP/K008528/1)This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Springer

    Algebraic Principles for Program Correctness Tools in Isabelle/HOL

    Get PDF
    This thesis puts forward a flexible and principled approach to the development of construction and verification tools for imperative programs, in which the control flow and the data level are cleanly separated. The approach is inspired by algebraic principles and benefits from an algebraic semantics layer. It is programmed in the Isabelle/HOL interactive theorem prover and yields simple lightweight mathematical components as well as program construction and verification tools that are themselves correct by construction. First, a simple tool is implemented using Kleeene algebra with tests (KAT) for the control flow of while-programs, which is the most compact verification formalism for imperative programs, and their standard relational semantics for the data level. A reference formalisation of KAT in Isabelle/HOL is then presented, providing three different formalisations of tests. The structured comprehensive libraries for these algebras include an algebraic account of Hoare logic for partial correctness. Verification condition generation and program construction rules are based on equational reasoning and supported by powerful Isabelle tactics and automated theorem proving. Second, the tool is expanded to support different programming features and verification methods. A basic program construction tool is developed by adding an operation for the specification statement and one single axiom. To include recursive procedures, KATs are expanded further to quantales with tests, where iteration and the specification statement can be defined explicitly. Additionally, a nondeterministic extension supports the verification of simple concurrent programs. Finally, the approach is also applied to separation logic, where the control-flow is modelled by power series with convolution as separating conjunction. A generic construction lifts resource monoids to assertion and predicate transformer quantales. The data level is captured by concrete store-heap models. These are linked to the algebra by soundness proofs. A number of examples shows the tools at work

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    A Simple Logic of Functional Dependence

    Get PDF
    This paper presents a simple decidable logic of functional dependence LFD, based on an extension of classical propositional logic with dependence atoms plus dependence quantifiers treated as modalities, within the setting of generalized assignment semantics for first order logic. The expressive strength, complete proof calculus and meta-properties of LFD are explored. Various language extensions are presented as well, up to undecidable modal-style logics for independence and dynamic logics of changing dependence models. Finally, more concrete settings for dependence are discussed: continuous dependence in topological models, linear dependence in vector spaces, and temporal dependence in dynamical systems and games.Comment: 56 pages. Journal of Philosophical Logic (2021

    Distributed Relation Logic

    Get PDF
    We extend the relational algebra of Chin and Tarski so that it is multisorted or, as we prefer, typed. Each type supports a local Boolean algebra outfitted with a converse operator. From Lyndon, we know that relation algebras cannot be represented as proper relation algebras where a proper relation algebra has binary relations as elements and the algebra is singly-typed. Here, the intensional conjunction, which was to represent relational composition in Chin and Tarski, spans three different local algebras, thus the term distributed in the title. Since we do not rely on proper relation algebras, we are free to re-express the algebras as typed. In doing so, we allow many different intensional conjunction operators.We construct a typed logic over these algebras, also known as heterogeneous algebras of Birkhoff and Lipson. The logic can be seen as a form of relevance logic with a classical negation connective where the Routley-Meyer star operator is reified as a converse connective in the logic. Relevance logic itself is not typed but our work shows how it can be made so. Some of the properties of classical relevance logic are weakened from Routley-Meyer’s version which is too strong for a logic over relation algebras
    • …
    corecore