3,573 research outputs found

    Influence of different design parameters on a coplanar capacitive sensor performance

    Get PDF
    Coplanar capacitive sensors are employed in Non-destructive Testing (NDT) methods to measure the difference in dielectric properties of the materials. The most important design parameters for a coplanar capacitive sensor include the shape, size, and separation distance of the electrodes which affect the sensor performance. In addition, the impact of the shielding plate and guard electrode should be considered. In the framework of this paper, numerical simulations and physical experiments are studied for two shapes of electrodes, triangular and rectangular, by examining different sizes and different separation distances between electrodes to assess and analyze the important features of the coplanar capacitive electrodes, such as the penetration and strength of the electric field as a function of sensor geometrical properties. Therefore, a detailed analysis of numerical simulation using Finite Element Modelling (FEM) is provided to study these geometric parameters. In addition, the influence of the different frequencies, lift-off, and the presence or absence of a metal shielding plate and guard electrode on the output result is analyzed. Finally, sensors were manufactured and several experiments were carried out under different configurations. Comparison of the numerical simulation results and physical experiments illustrate that they are in good qualitative agreement

    Capacitive imaging technique for non-destructive evaluation (NDE)

    Get PDF
    This thesis describes the development and characterization of a novel NDE methodthe Capacitive Imaging (CI) technique. The CI technique employs a pair of (or multiple) electrodes to form a co-planar capacitor, and uses the fringing quasi-static electric field established across the electrodes to investigate specimens of interest. In general, the CI probe is sensitive to surface and hidden defects in insulating materials, and surface features on conducting materials. The CI technique is advantageous for its non-contact and non-invasive nature, and the capacitive coupling allows the CI technique to work on a wide variety of material properties. The theoretical background to the CI technique has been developed. It is shown that in the frequency range of operation (10 kHz to 1 MHz), the quasi-static approximation is valid and the Maxwell’s Equations describing the general electromagnetic phenomena can be simplified. The practical implementation of the CI system is based on this analysis, and it is shown that the CI technique has features that can complement techniques such as eddy current methods that are already established in NDE. The design principles of the CI probes that are required for an optimum imaging performance have been determined, by considering the key measures of the performance including the depth of penetration, the measurement sensitivity, the imaging resolution and the signal to noise ratio (SNR). It has been shown that the operation frequency is not an influential factor - the performance of the CI probe is determined primarily by the geometry of the probe (e.g. size/shape of the electrodes, separation between electrodes, guard electrodes etc.). Symmetric CI probes with triangular-shaped electrodes were identified as a good general purpose design. Finite Element (FE) models were constructed both in 2D and 3D in COMSOLTM to predict the electric field distributions from CI probes. Effects of thickness of specimen, liftoff distance and relative permittivity value etc were examined using the 2D models. The sensitivity distributions of different CI probes were obtained from the 3D models and were used to characterize the imaging ability of the given CI probes. The fundamental concepts of the CI technique have been experimentally validated in a series of scans where the defects were successfully imaged in insulating (Perspex) and conducting (e.g. Aluminium, Steel and carbon fibre composite) specimens. The detection of corrosion under insulation (CUI) has also been demonstrated. The imaging abilities were assessed by investigating various standard specimens under different situations. The CI technique was then successfully applied to various practical specimens, including glass fibre laminated composites and sandwich structures, laminated carbon fibre composites, corroded steel plate and pipe, and concrete specimens. Further measurements were also conducted using modified CI probes, to demonstrate the wide range of applications of the CI technique

    Material inspection using new electromagnetic testing technology : coplanar capacitive sensing technique

    Get PDF
    Les matériaux diélectriques jouent un rôle important dans les applications industrielles et les domaines de la recherche scientifique et leur utilisation a augmenté ces dernières années. Leurs applications concernent l'industrie moderne des circuits intégrés et les réseaux d'antennes compacts. De plus, les composites structuraux légers dans l'industrie aérospatiale, les armures corporelles en Kevlar et les composites à matrice céramique pour la stabilité thermique dans les environnements chauds des moteurs sont des exemples de certaines des applications récemment développées des matériaux diélectriques. Par conséquent, la détection des défauts de ces matériaux diélectriques devient très importante pour le contrôle du processus de fabrication, l'optimisation de la conception et des performances des appareils électriques, et la surveillance et le diagnostic du système. Par conséquent, le besoin de tests de contrôle non destructifs (CND) précis des matériaux structurels et fonctionnels diélectriques a également augmenté. Cependant, le CND de ces matériaux n'est pas aussi développé que celui des métaux et de nouvelles approches pour évaluer la qualité de ces matériaux lors de la fabrication et de la maintenance n'ont pas encore été développées. Par conséquent, il sera utile de développer de nouvelles méthodes telles que des techniques de détection capacitive qui peuvent surmonter certaines des restrictions associées à d'autres techniques d'évaluation des matériaux diélectriques. La simulation numérique utilisant la modélisation par éléments finis (FEM) tridimensionnelle (3D) est utilisée dans le logiciel COMSOL Multiphysics pour simuler la distribution du champ électrique à partir d'un capteur capacitif coplanaire et la façon dont il interagit avec divers échantillons composés de différents types de défauts. Une analyse détaillée FEM est fournie pour étudier les paramètres de conception, y compris la forme/taille/distance des électrodes coplanaires pour évaluer et identifier les caractéristiques importantes des électrodes capacitives coplanaires, telles que la pénétration et la force du champ électrique en fonction du capteur propriétés géométriques. De plus, l'influence des différentes fréquences, du décollement et de la présence ou de l'absence d'une plaque de blindage métallique et d'une électrode de garde sur le résultat de sortie est analysée par la même méthode. En outre, la distribution du champ électrique, en fonction du nombre d'électrodes, à partir d'un capteur capacitif coplanaire multi-électrodes avec différents agencements d'électrodes d'entraînement et de détection, et comment ce champ peut être modifié en changeant l'agencement est simulé et illustré par le MEF 3D. Des expériences physiques sont réalisées avec plusieurs capteurs capacitifs coplanaires pour vérifier les résultats de la simulation et évaluer les performances de la sonde. Dans ces expériences, les performances d'imagerie du capteur, l'effet des paramètres de conception sur les performances du capteur, l'impact des divers matériaux testés et la faisabilité de la sonde capacitive coplanaire multi-électrodes seront pris en compte. La comparaison des résultats de simulation numérique et d'expériences physiques montre qu'ils sont en bon accord qualitatif.Dielectric materials have an extensive role in both industrial applications and scientific research areas and their use has increased in recent years. Furthermore, lightweight structural composites in the aerospace industry, Kevlar body-armour and ceramic-matrix composites for thermal stability in hot engine environments are examples of some of the recently developed applications of dielectric materials. Therefore, the flaw detection of these dielectric materials becomes markedly important for the process control in manufacturing, optimization of electrical apparatus design and performance, and system monitoring and diagnostics. Consequently, the need for accurate non-destructive testing (NDT) of dielectric structural and functional materials has also been increased. However, the NDT of such materials is not as well developed as those for metals and new approaches to evaluate the quality of these materials during manufacturing and maintenance have not yet been expanded. Therefore, it will be valuable to develop new methods such as capacitive sensing techniques which can overcome some of the restrictions associated with other techniques for assessing dielectric materials. The numerical simulation using three dimensional (3 D) Finite Element Modelling (FEM) is employed in COMSOL Multiphysics software to simulate the electric field distribution from a coplanar capacitive sensor and the way it interacts with various specimens composed of different types of defects. A detailed analysis FEM is provided to study the design parameters including the shape/size/distance of the coplanar electrodes to assess and identify the important features of the coplanar capacitive electrodes, such as the penetration and strength of the electric field as a function of sensor geometrical properties. In addition, the influence of the different frequencies, lift-off, and the presence or absence of a metal shielding plate and guard electrode on the output result is analyzed by the same method. Besides, the electric field distribution, as a function of the number of electrodes, from a multi-electrode coplanar capacitive sensor with different arrangements of driving and sensing electrodes, and how this field may be altered by changing the arrangement is simulated and illustrated by the 3D FEM. Physical experiments are carried out by several coplanar capacitive sensors to verify the simulation results and evaluate the performance of the probe. In these experiments, the imaging performance of the sensor, the effect of design parameters on the sensor performance, the impact of various materials under test, and the feasibility of the multi-electrode coplanar capacitive probe will be considered. Comparison of the numerical simulation results and physical experiments illustrate that they are in good qualitative agreement

    A 2 degree-of-freedom SOI-MEMS translation stage with closed loop positioning

    Get PDF
    This research contains the design, analysis, fabrication, and characterization of a closed loop XY micro positioning stage. The XY micro positioning stage is developed by adapting parallel-kinematic mechanisms, which have been widely used for macro and meso scale positioning systems, to silicon-based micropositioner. Two orthogonal electrostatic comb drives are connected to moving table through 4-bar mechanism and independent hinges which restrict unwanted rotation in 2-degree-of-freedom translational stage. The XY micro positioning stage is fabricated on SOI wafer with three photolithography patterning processes followed by series of DRIE etching and HF etching to remove buried oxide layer to release the end-effector of the device. The fabricated XY micro positioning stage is shown in Fig1 with SEM images. The device provides a motion range of 20 microns in each direction at the driving voltage of 100V. The resonant frequency of the XY stage under ambient conditions is 811 Hz with a high quality factor of 40 achieved from parallel kinematics. The positioning loop is closed using a COTS capacitance-to-voltage conversion IC and a PID controller built in D-space is used to control position with an uncertainty characterized by a standard distribution of 5.24nm and a approximate closed-loop bandwidth of 27Hz. With the positioning loop, the rise time and settling time for closed-loop system are 50ms and 100ms. With sinusoidal input of ω=1Hz, the maximum phase difference of 108nm from reference input is obtained with total motion range of 8μm

    High frequency CMUT for continuous monitoring of red blood cells aggregation

    Get PDF
    Récemment, de nombreuses recherches ont démontré que le transducteur ultrasonore micro-usiné capacitif CMUT peut être une alternative aux transducteurs piézoélectriques dans différents domaines, y compris l’imagerie par ultrasons médicaux. Des travaux antérieurs ont démontré les avantages de CMUT en termes de production à haute fréquence, de sensibilité, de compatibilité avec la technologie complémentaire métal – oxyde – semi-conducteur et de coût de fabrication peu élevé. Ce travail montrera les travaux préliminaires en vue de la fabrication d'un transducteur à ultrasons utilisant des CMUT pour mesurer en continu l'agrégation des globules rouges. Les cellules CMUT ont été conçues et simulées pour obtenir des fréquences de résonance et des dimensions spécifiques répondant à cet objectif, à l'aide de la modélisation par éléments finis avec COMSOL Multiphysics. Des simulations par ultrasons (logiciel Field II) ont été utilisées pour caractériser les faisceaux ultrasonores émis et reçus afin de concevoir la distribution géométrique des cellules. La fabrication a été réalisée en utilisant une photolithographie multicouche et des dépôts. Huit masques ont été conçus pour chaque couche de dépôt. Les masques ont été conçus pour comporter quatre groupes de CMUT, le premier émettant et recevant à 40 MHz, le second émettant à 30 MHz et recevant à 40 MHz, le troisième émettant à 20 MHz et recevant à 30 MHz, et le dernier émettant à 10 MHz. MHz et réception à 30 MHz. La fréquence change avec le rayon de chaque cellule CMUT, mais les dimensions de l'épaisseur sont les mêmes pour toutes les cellules, les épaisseurs des membranes et des couches isolantes sont de 0,3 µm et l'intervalle de vide est de 0,1 µm. Les matrices CMUT ont été fabriquées à l'aide de la technologie de couche de libération sacrificielle du laboratoire Polytechnique LMF.Research has demonstrated that Capacitive Micro machined Ultrasonic Transducer (CMUT) can be an alternative to piezoelectric transducers in different domains including medical ultrasound imaging. Previous work showed advantages of CMUT in terms of high frequency production, sensitivity, its compatibility with complementary metal–oxide–semiconductor technology and its low cost of fabrication. This work will show preliminary work toward fabricating an ultrasound transducer using CMUTs to continuously measure Red Blood Cells aggregation. CMUTs cells were designed and simulated to obtain specific resonant frequencies and dimension that fulfill that purpose using finite element modeling with COMSOL Multiphysics. Ultrasound simulations (Field II software) were used to characterize the emitted and received US beams to design the cells geometrical distribution. Fabrication was done using multilayered photolithography and depositions. Eight masks were designed for each deposition layer. The masks were designed to have four groups of CMUTs, one emitting and receiving at 40MHz, a second emitting at 30 MHz and receiving at 40 MHz, a third one emitting at 20 MHz and receiving at 30 MHz, and a last one emitting at 10 MHz and receiving at 30 MHz. The frequency changes with the radius of each CMUT cell but the thickness dimensions are the same for all the cells, the membranes and insulation layers thicknesses are 0.3 µm and the vacuum gap is 0.1 µm. The CMUT arrays were fabricated using sacrificial release layer technology in Polytechnic LMF Lab

    Sub-diffraction thin-film sensing with planar terahertz metamaterials

    Full text link
    Planar metamaterials have been recently proposed for thin dielectric film sensing in the terahertz frequency range. Although the thickness of the dielectric film can be very small compared with the wavelength, the required area of sensed material is still determined by the diffraction-limited spot size of the terahertz beam excitation. In this article, terahertz near-field sensing is utilized to reduce the spot size. By positioning the metamaterial sensing platform close to the sub-diffraction terahertz source, the number of excited resonators, and hence minimal film area, are significantly reduced. As an additional advantage, a reduction in the number of excited resonators decreases the inter-cell coupling strength, and consequently the resonance Q factor is remarkably increased. The experimental results show that the resonance Q factor is improved by 113%. Moreover, for a film with a thickness of \lambda/375 the minimal area can be as small as 0.2\lambda by 0.2\lambda. The success of this work provides a platform for future metamaterial-based sensors for biomolecular detection.Comment: 8 pages, 6 figure

    Capacitive Sensor Based 2D Subsurface Imaging Technology for Non Destructive Evaluation of Building Surfaces

    Full text link
    Understanding the underlying structure of building surfaces like walls and floors is essential when carrying out building maintenance and modification work. To facilitate such work, this paper introduces a capacitive sensor-based technology which can conduct non-destructive evaluation of building surfaces. The novelty of this sensor is that it can generate a real-time 2D subsurface image which can be used to understand structure beneath the top surface. Finite Element Analysis (FEA) simulations are done to understand the best sensor head configuration that gives optimum results. Hardware and software components are custom-built to facilitate real-time imaging capability. The sensor is validated by laboratory tests, which revealed the ability of the proposed capacitive sensing technology to see through common building materials like wood and concrete. The 2D image generated by the sensor is found to be useful in understanding the subsurface structure beneath the top surface
    • …
    corecore