2,872 research outputs found

    A Cross-Layer Approach for Minimizing Interference and Latency of Medium Access in Wireless Sensor Networks

    Full text link
    In low power wireless sensor networks, MAC protocols usually employ periodic sleep/wake schedule to reduce idle listening time. Even though this mechanism is simple and efficient, it results in high end-to-end latency and low throughput. On the other hand, the previously proposed CSMA/CA-based MAC protocols have tried to reduce inter-node interference at the cost of increased latency and lower network capacity. In this paper we propose IAMAC, a CSMA/CA sleep/wake MAC protocol that minimizes inter-node interference, while also reduces per-hop delay through cross-layer interactions with the network layer. Furthermore, we show that IAMAC can be integrated into the SP architecture to perform its inter-layer interactions. Through simulation, we have extensively evaluated the performance of IAMAC in terms of different performance metrics. Simulation results confirm that IAMAC reduces energy consumption per node and leads to higher network lifetime compared to S-MAC and Adaptive S-MAC, while it also provides lower latency than S-MAC. Throughout our evaluations we have considered IAMAC in conjunction with two error recovery methods, i.e., ARQ and Seda. It is shown that using Seda as the error recovery mechanism of IAMAC results in higher throughput and lifetime compared to ARQ.Comment: 17 pages, 16 figure

    A Trust Based Fuzzy Algorithm for Congestion Control in Wireless Multimedia Sensor Networks (TFCC)

    Full text link
    Network congestion has become a critical issue for resource constrained Wireless Sensor Networks (WSNs), especially for Wireless Multimedia Sensor Networks (WMSNs)where large volume of multimedia data is transmitted through the network. If the traffic load is greater than the available capacity of the sensor network, congestion occurs and it causes buffer overflow, packet drop, deterioration of network throughput and quality of service (QoS). Again, the faulty nodes of the network also aggravate congestion by diffusing useless packets or retransmitting the same packet several times. This results in the wastage of energy and decrease in network lifetime. To address this challenge, a new congestion control algorithm is proposed in which the faulty nodes are identified and blocked from data communication by using the concept of trust. The trust metric of all the nodes in the WMSN is derived by using a two-stage Fuzzy inferencing scheme. The traffic flow from source to sink is optimized by implementing the Link State Routing Protocol. The congestion of the sensor nodes is controlled by regulating the rate of traffic flow on the basis of the priority of the traffic. Finally we compare our protocol with other existing congestion control protocols to show the merit of the work.Comment: 6 pages, 5 figures, conference pape

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Fuzzy based load and energy aware multipath routing for mobile ad hoc networks

    Get PDF
    Routing is a challenging task in Mobile Ad hoc Networks (MANET) due to their dynamic topology and lack of central administration. As a consequence of un-predictable topology changes of such networks, routing protocols employed need to accurately capture the delay, load, available bandwidth and residual node energy at various locations of the network for effective energy and load balancing. This paper presents a fuzzy logic based scheme that ensures delay, load and energy aware routing to avoid congestion and minimise end-to-end delay in MANETs. In the proposed approach, forwarding delay, average load, available bandwidth and residual battery energy at a mobile node are given as inputs to a fuzzy inference engine to determine the traffic distribution possibility from that node based on the given fuzzy rules. Based on the output from the fuzzy system, traffic is distributed over fail-safe multiple routes to reduce the load at a congested node. Through simulation results, we show that our approach reduces end-to-end delay, packet drop and average energy consumption and increases packet delivery ratio for constant bit rate (CBR) traffic when compared with the popular Ad hoc On-demand Multipath Distance Vector (AOMDV) routing protocol

    KFOA: K-mean clustering, Firefly based data rate Optimization and ACO routing for Congestion Control in WSN

    Get PDF
    Wireless sensor network (WSN) is assortment of sensor nodes proficient in environmental information sensing, refining it and transmitting it to base station in sovereign manner. The minute sensors communicate themselves to sense and monitor the environment. The main challenges are limited power, short communication range, low bandwidth and limited processing. The power source of these sensor nodes are the main hurdle in design of energy efficient network. The main objective of the proposed clustering and data transmission algorithm is to augment network performance by using swarm intelligence approach. This technique is based on K-mean based clustering, data rate optimization using firefly optimization algorithm and Ant colony optimization based data forwarding. The KFOA is divided in three parts: (1) Clustering of sensor nodes using K-mean technique and (2) data rate optimization for controlling congestion and (3) using shortest path for data transmission based on Ant colony optimization (ACO) technique. The performance is analyzed based on two scenarios as with rate optimization and without rate optimization. The first scenario consists of two operations as k- mean clustering and ACO based routing. The second scenario consists of three operations as mentioned in KFOA. The performance is evaluated in terms of throughput, packet delivery ratio, energy dissipation and residual energy analysis. The simulation results show improvement in performance by using with rate optimization technique

    TCP in the Internet of Things: from ostracism to prominence

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.TCP has traditionally been neglected as a transport-layer protocol for the Internet of Things (IoT). However, recent trends and industry needs are favoring TCP presence in IoT environments. In this article, we describe the main IoT scenarios where TCP will be used. We then analyze the historically claimed issues of TCP in the IoT context. We argue that, in contrast to generally accepted wisdom, most of those possible issues fall in one of the following categories: i) are also found in well-accepted IoT end-to-end reliability mechanisms, ii) can be solved, or iii) are not actual issues. Considering the future prominent role of TCP in the IoT, we provide recommendations for lightweight TCP implementation and suitable operation in such scenarios, based on our IETF standardization work on the topic.Postprint (author's final draft

    Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks

    Get PDF
    Heterogeneous cloud radio access networks (H-CRANs) are envisioned to be promising in the fifth generation (5G) wireless networks. H-CRANs enable users to enjoy diverse services with high energy efficiency, high spectral efficiency, and low-cost operation, which are achieved by using cloud computing and virtualization techniques. However, H-CRANs face many technical challenges due to massive user connectivity, increasingly severe spectrum scarcity and energy-constrained devices. These challenges may significantly decrease the quality of service of users if not properly tackled. Non-orthogonal multiple access (NOMA) schemes exploit non-orthogonal resources to provide services for multiple users and are receiving increasing attention for their potential of improving spectral and energy efficiency in 5G networks. In this article a framework for energy-efficient NOMA H-CRANs is presented. The enabling technologies for NOMA H-CRANs are surveyed. Challenges to implement these technologies and open issues are discussed. This article also presents the performance evaluation on energy efficiency of H-CRANs with NOMA.Comment: This work has been accepted by IEEE Network. Pages 18, Figure
    • 

    corecore