69 research outputs found

    LifeCLEF Bird Identification Task 2015

    Get PDF
    International audienceThe LifeCLEF bird identification task provides a testbed for a system-oriented evaluation of 999 bird species identification. The main originality of this data is that it was specifically built through a citizen science initiative conducted by Xeno-Canto, an international social network of amateur and expert ornithologists. This makes the task closer to the conditions of a real-world application than previous, similar initiatives. This overview presents the resources and the assessments of the task, summarizes the retrieval approaches employed by the participating groups, and provides an analysis of the main evaluation results

    LifeCLEF 2016: Multimedia Life Species Identification Challenges

    Get PDF
    International audienceUsing multimedia identification tools is considered as one of the most promising solutions to help bridge the taxonomic gap and build accurate knowledge of the identity, the geographic distribution and the evolution of living species. Large and structured communities of nature observers (e.g., iSpot, Xeno-canto, Tela Botanica, etc.) as well as big monitoring equipment have actually started to produce outstanding collections of multimedia records. Unfortunately, the performance of the state-of-the-art analysis techniques on such data is still not well understood and is far from reaching real world requirements. The LifeCLEF lab proposes to evaluate these challenges around 3 tasks related to multimedia information retrieval and fine-grained classification problems in 3 domains. Each task is based on large volumes of real-world data and the measured challenges are defined in collaboration with biologists and environmental stakeholders to reflect realistic usage scenarios. For each task, we report the methodology, the data sets as well as the results and the main outcom

    Domain-specific neural networks improve automated bird sound recognition already with small amount of local data

    Get PDF
    1. An automatic bird sound recognition system is a useful tool for collecting data of different bird species for ecological analysis. Together with autonomous recording units (ARUs), such a system provides a possibility to collect bird observations on a scale that no human observer could ever match. During the last decades, progress has been made in the field of automatic bird sound recognition, but recognizing bird species from untargeted soundscape recordings remains a challenge. 2. In this article, we demonstrate the workflow for building a global identification model and adjusting it to perform well on the data of autonomous recorders from a specific region. We show how data augmentation and a combination of global and local data can be used to train a convolutional neural network to classify vocalizations of 101 bird species. We construct a model and train it with a global data set to obtain a base model. The base model is then fine-tuned with local data from Southern Finland in order to adapt it to the sound environment of a specific location and tested with two data sets: one originating from the same Southern Finnish region and another originating from a different region in German Alps. 3. Our results suggest that fine-tuning with local data significantly improves the network performance. Classification accuracy was improved for test recordings from the same area as the local training data (Southern Finland) but not for recordings from a different region (German Alps). Data augmentation enables training with a limited number of training data and even with few local data samples significant improvement over the base model can be achieved. Our model outperforms the current state-of-the-art tool for automatic bird sound classification.An automatic bird sound recognition system is a useful tool for collecting data of different bird species for ecological analysis. Together with autonomous recording units (ARUs), such a system provides a possibility to collect bird observations on a scale that no human observer could ever match. During the last decades, progress has been made in the field of automatic bird sound recognition, but recognizing bird species from untargeted soundscape recordings remains a challenge. In this article, we demonstrate the workflow for building a global identification model and adjusting it to perform well on the data of autonomous recorders from a specific region. We show how data augmentation and a combination of global and local data can be used to train a convolutional neural network to classify vocalizations of 101 bird species. We construct a model and train it with a global data set to obtain a base model. The base model is then fine-tuned with local data from Southern Finland in order to adapt it to the sound environment of a specific location and tested with two data sets: one originating from the same Southern Finnish region and another originating from a different region in German Alps. Our results suggest that fine-tuning with local data significantly improves the network performance. Classification accuracy was improved for test recordings from the same area as the local training data (Southern Finland) but not for recordings from a different region (German Alps). Data augmentation enables training with a limited number of training data and even with few local data samples significant improvement over the base model can be achieved. Our model outperforms the current state-of-the-art tool for automatic bird sound classification. Using local data to adjust the recognition model for the target domain leads to improvement over general non-tailored solutions. The process introduced in this article can be applied to build a fine-tuned bird sound classification model for a specific environment.Peer reviewe

    Mosquito Detection with Neural Networks: The Buzz of Deep Learning

    Full text link
    Many real-world time-series analysis problems are characterised by scarce data. Solutions typically rely on hand-crafted features extracted from the time or frequency domain allied with classification or regression engines which condition on this (often low-dimensional) feature vector. The huge advances enjoyed by many application domains in recent years have been fuelled by the use of deep learning architectures trained on large data sets. This paper presents an application of deep learning for acoustic event detection in a challenging, data-scarce, real-world problem. Our candidate challenge is to accurately detect the presence of a mosquito from its acoustic signature. We develop convolutional neural networks (CNNs) operating on wavelet transformations of audio recordings. Furthermore, we interrogate the network's predictive power by visualising statistics of network-excitatory samples. These visualisations offer a deep insight into the relative informativeness of components in the detection problem. We include comparisons with conventional classifiers, conditioned on both hand-tuned and generic features, to stress the strength of automatic deep feature learning. Detection is achieved with performance metrics significantly surpassing those of existing algorithmic methods, as well as marginally exceeding those attained by individual human experts.Comment: For data and software related to this paper, see http://humbug.ac.uk/kiskin2017/. Submitted as a conference paper to ECML 201

    Data-Efficient Classification of Birdcall Through Convolutional Neural Networks Transfer Learning

    Full text link
    Deep learning Convolutional Neural Network (CNN) models are powerful classification models but require a large amount of training data. In niche domains such as bird acoustics, it is expensive and difficult to obtain a large number of training samples. One method of classifying data with a limited number of training samples is to employ transfer learning. In this research, we evaluated the effectiveness of birdcall classification using transfer learning from a larger base dataset (2814 samples in 46 classes) to a smaller target dataset (351 samples in 10 classes) using the ResNet-50 CNN. We obtained 79% average validation accuracy on the target dataset in 5-fold cross-validation. The methodology of transfer learning from an ImageNet-trained CNN to a project-specific and a much smaller set of classes and images was extended to the domain of spectrogram images, where the base dataset effectively played the role of the ImageNet.Comment: Accepted for IEEE Digital Image Computing: Techniques and Applications, 2019 (DICTA 2019), 2-4 December 2019 in Perth, Australia, http://dicta2019.dictaconference.org/index.htm

    Shared nearest neighbors match kernel for bird songs identification -LifeCLEF 2015 challenge

    Get PDF
    International audienceThis paper presents a new fine-grained audio classification technique designed and experimented in the context of the LifeCLEF 2015 bird species identification challenge. Inspired by recent works on fine-grained image classification, we introduce a new match kernel based on the shared nearest neighbors of the low level audio features extracted at the frame level. To make such strategy scalable to the tens of millions of MFCC features extracted from the tens of thousands audio recordings of the training set, we used high-dimensional hashing techniques coupled with an efficient approximate nearest neighbors search algorithm with controlled quality. Further improvements are obtained by (i) using a sliding window for the temporal pooling of the raw matches (ii) weighting each low level feature according to the semantic coherence of its nearest neighbors. Results show the effectiveness of the proposed technique which ranked 2nd among the 7 research groups participating to the LifeCLEF bird challenge

    LifeCLEF Bird Identification Task 2016: The arrival of Deep learning

    Get PDF
    International audienceThe LifeCLEF bird identification challenge provides a large-scale testbed for the system-oriented evaluation of bird species identification based on audio recordings. One of its main strength is that the data used for the evaluation is collected through Xeno-Canto, the largest network of bird sound recordists in the world. This makes the task closer to the conditions of a real-world application than previous, similar initiatives. The main novelty of the 2016-th edition of the challenge was the inclusion of soundscape recordings in addition to the usual xeno-canto recordings that focus on a single foreground species. This paper reports the methodology of the conducted evaluation, the overview of the systems experimented by the 6 participating research groups and a synthetic analysis of the obtained results
    • …
    corecore