3,742 research outputs found

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    Full text link
    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need to transmit their packets. In this paper, we investigate a novel optimal scheduling strategy, called EHMDP, aiming to minimize data packet loss from a network of sensor nodes in terms of the nodes' energy consumption and data queue state information. The scheduling problem is first formulated by a centralized MDP model, assuming that the complete states of each node are well known by the base station. This presents the upper bound of the data that can be collected in a rechargeable wireless sensor network. Next, we relax the assumption of the availability of full state information so that the data transmission and WPT can be semi-decentralized. The simulation results show that, in terms of network throughput and packet loss rate, the proposed algorithm significantly improves the network performance.Comment: 30 pages, 8 figures, accepted to IEEE Transactions on Vehicular Technolog

    Efficient and Reliable Task Scheduling, Network Reprogramming, and Data Storage for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) typically consist of a large number of resource-constrained nodes. The limited computational resources afforded by these nodes present unique development challenges. In this dissertation, we consider three such challenges. The first challenge focuses on minimizing energy usage in WSNs through intelligent duty cycling. Limited energy resources dictate the design of many embedded applications, causing such systems to be composed of small, modular tasks, scheduled periodically. In this model, each embedded device wakes, executes a task-set, and returns to sleep. These systems spend most of their time in a state of deep sleep to minimize power consumption. We refer to these systems as almost-always-sleeping (AAS) systems. We describe a series of task schedulers for AAS systems designed to maximize sleep time. We consider four scheduler designs, model their performance, and present detailed performance analysis results under varying load conditions. The second challenge focuses on a fast and reliable network reprogramming solution for WSNs based on incremental code updates. We first present VSPIN, a framework for developing incremental code update mechanisms to support efficient reprogramming of WSNs. VSPIN provides a modular testing platform on the host system to plug-in and evaluate various incremental code update algorithms. The framework supports Avrdude, among the most popular Linux-based programming tools for AVR microcontrollers. Using VSPIN, we next present an incremental code update strategy to efficiently reprogram wireless sensor nodes. We adapt a linear space and quadratic time algorithm (Hirschberg\u27s Algorithm) for computing maximal common subsequences to build an edit map specifying an edit sequence required to transform the code running in a sensor network to a new code image. We then present a heuristic-based optimization strategy for efficient edit script encoding to reduce the edit map size. Finally, we present experimental results exploring the reduction in data size that it enables. The approach achieves reductions of 99.987% for simple changes, and between 86.95% and 94.58% for more complex changes, compared to full image transmissions - leading to significantly lower energy costs for wireless sensor network reprogramming. The third challenge focuses on enabling fast and reliable data storage in wireless sensor systems. A file storage system that is fast, lightweight, and reliable across device failures is important to safeguard the data that these devices record. A fast and efficient file system enables sensed data to be sampled and stored quickly and batched for later transmission. A reliable file system allows seamless operation without disruptions due to hardware, software, or other unforeseen failures. While flash technology provides persistent storage by itself, it has limitations that prevent it from being used in mission-critical deployment scenarios. Hybrid memory models which utilize newer non-volatile memory technologies, such as ferroelectric RAM (FRAM), can mitigate the physical disadvantages of flash. In this vein, we present the design and implementation of LoggerFS, a fast, lightweight, and reliable file system for wireless sensor networks, which uses a hybrid memory design consisting of RAM, FRAM, and flash. LoggerFS is engineered to provide fast data storage, have a small memory footprint, and provide data reliability across system failures. LoggerFS adapts a log-structured file system approach, augmented with data persistence and reliability guarantees. A caching mechanism allows for flash wear-leveling and fast data buffering. We present a performance evaluation of LoggerFS using a prototypical in-situ sensing platform and demonstrate between 50% and 800% improvements for various workloads using the FRAM write-back cache over the implementation without the cache
    • 

    corecore