14,807 research outputs found

    Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 1: Bottoming cycles and materials of construction

    Get PDF
    Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed

    Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review

    Get PDF
    With the privatization and intense competition that characterize the volatile energy sector, the gas turbine industry currently faces new challenges of increasing operational flexibility, reducing operating costs, improving reliability and availability while mitigating the environmental impact. In this complex, changing sector, the gas turbine community could address a set of these challenges by further development of high fidelity, more accurate and computationally efficient engine health assessment, diagnostic and prognostic systems. Recent studies have shown that engine gas-path performance monitoring still remains the cornerstone for making informed decisions in operation and maintenance of gas turbines. This paper offers a systematic review of recently developed engine performance monitoring, diagnostic and prognostic techniques. The inception of performance monitoring and its evolution over time, techniques used to establish a high-quality dataset using engine model performance adaptation, and effects of computationally intelligent techniques on promoting the implementation of engine fault diagnosis are reviewed. Moreover, recent developments in prognostics techniques designed to enhance the maintenance decision-making scheme and main causes of gas turbine performance deterioration are discussed to facilitate the fault identification module. The article aims to organize, evaluate and identify patterns and trends in the literature as well as recognize research gaps and recommend new research areas in the field of gas turbine performance-based monitoring. The presented insightful concepts provide experts, students or novice researchers and decision-makers working in the area of gas turbine engines with the state of the art for performance-based condition monitoring

    Aircraft engine hot section technology: An overview of the HOST Project

    Get PDF
    NASA sponsored the Turbine Engine Hot Section (HOST) project to address the need for improved durability in advanced aircraft engine combustors and turbines. Analytical and experimental activities aimed at more accurate prediction of the aerothermal environment, the thermomechanical loads, the material behavior and structural responses to loads, and life predictions for cyclic high temperature operation were conducted from 1980 to 1987. The project involved representatives from six engineering disciplines who are spread across three work disciplines - industry, academia, and NASA. The HOST project not only initiated and sponsored 70 major activities, but also was the keystone in joining the multiple disciplines and work sectors to focus on critical research needs. A broad overview of the project is given along with initial indications of the project's impact

    GAS TURBINE PACKAGING OPTIONS AND FEATURES

    Get PDF
    TutorialThis tutorial provides an overview of typical packaging options for gas turbines in industrial applications. Applicable standards are discussed. The requirements for different systems, such as air filtration, and fuel systems are explained. Off shore requirements, especially on floating systems are highlighted

    How clean is clean? Incremental versus radical technological change in coal-fired power plants

    Get PDF
    In the discussion on innovations for sustainable development, radical innovations are frequently called for in order that the transformation of society to a system perceived as sustainable can succeed. The reason given for this is the greater environmental efficiency of these innovations. This hypothesis is, however, not supported by empirical evidence. Against the background of a globally increasing use of coal-burning power plants and the environmental impacts to be expected, the hypothesis that radical innovations are superior to incremental innovations is reviewed on the basis of fossil fuel power plants. This paper examines the diffusion of incremental and radical innovations in the field of power plants and the basic obstacles with which these innovations were confronted. To give an example, Pressurised Pulverised Coal Combustion (PPCC) as a radical innovation and supercritical coal-fired power plants as an incremental innovation are compared. An ex-post analysis of the German R&D portfolio in the past three decades in the field of power plants environmentally shows that technologies which were radical innovations had great difficulties in becoming accepted by possible investors. The future potential of radical innovations in the field of power plant technology is to be regarded as relatively low, especially due to comparatively high cost-pressure, the reluctance of utilities to take risks and the temporal dynamics of technological progress facilitating incremental innovations on the basis of conventional reference technology. The conclusion for future R&D work in the sector of large-scale power plants is that an innovation is more likely to succeed the more it follows established technological trajectories. In the context of energy market liberalisation, hardly any radical innovations are expected in this field of technology. The findings of this paper may also be helpful in evaluating risks or probabilities of success of technologies being developed. As an example technological trajectories currently favoured in CO2 capture are discussed. --Radical innovations,incremental innovations,carbon capture storage,coal power plants

    Gas Turbine Performance And Maintenance

    Get PDF
    TutorialProper maintenance and operating practices can significantly affect the level of performance degradation and thus, time between repairs or overhauls of a gas turbine. Understanding of performance characteristics of gas turbines helps proper applications, as well as driven and process equipment sizing. Proactive condition monitoring will allow the gas turbine operator to make intelligent service decisions based on the actual condition of the gas turbine rather than on fixed and calendar based maintenance intervals. Maintaining inlet air, fuel, and lube oil quality will further reduce gas turbine degradation and deterioration. This tutorial provides a discussion on performance characteristics and how performance degradation can be minimized. Recommendations are provided on how the operator can limit degradation and deterioration of the gas turbines through proper maintenance practices. The effects of water-washing and best washing practices are discussed. Emphasis is on the monitoring of gas turbine performance parameters to establish condition based maintenance practices

    Research and technology highlights of the Lewis Research Center

    Get PDF
    Highlights of research accomplishments of the Lewis Research Center for fiscal year 1984 are presented. The report is divided into four major sections covering aeronautics, space communications, space technology, and materials and structures. Six articles on energy are included in the space technology section
    corecore