564 research outputs found

    Real-Time Anisotropic Diffusion using Space-Variant Vision

    Full text link
    Many computer and robot vision applications require multi-scale image analysis. Classically, this has been accomplished through the use of a linear scale-space, which is constructed by convolution of visual input with Gaussian kernels of varying size (scale). This has been shown to be equivalent to the solution of a linear diffusion equation on an infinite domain, as the Gaussian is the Green's function of such a system (Koenderink, 1984). Recently, much work has been focused on the use of a variable conductance function resulting in anisotropic diffusion described by a nonlinear partial differential equation (PDF). The use of anisotropic diffusion with a conductance coefficient which is a decreasing function of the gradient magnitude has been shown to enhance edges, while decreasing some types of noise (Perona and Malik, 1987). Unfortunately, the solution of the anisotropic diffusion equation requires the numerical integration of a nonlinear PDF which is a costly process when carried out on a fixed mesh such as a typical image. In this paper we show that the complex log transformation, variants of which are universally used in mammalian retino-cortical systems, allows the nonlinear diffusion equation to be integrated at exponentially enhanced rates due to the non-uniform mesh spacing inherent in the log domain. The enhanced integration rates, coupled with the intrinsic compression of the complex log transformation, yields a seed increase of between two and three orders of magnitude, providing a means of performing real-time image enhancement using anisotropic diffusion.Office of Naval Research (N00014-95-I-0409

    The Local Structure of Space-Variant Images

    Full text link
    Local image structure is widely used in theories of both machine and biological vision. The form of the differential operators describing this structure for space-invariant images has been well documented (e.g. Koenderink, 1984). Although space-variant coordinates are universally used in mammalian visual systems, the form of the operators in the space-variant domain has received little attention. In this report we derive the form of the most common differential operators and surface characteristics in the space-variant domain and show examples of their use. The operators include the Laplacian, the gradient and the divergence, as well as the fundamental forms of the image treated as a surface. We illustrate the use of these results by deriving the space-variant form of corner detection and image enhancement algorithms. The latter is shown to have interesting properties in the complex log domain, implicitly encoding a variable grid-size integration of the underlying PDE, allowing rapid enhancement of large scale peripheral features while preserving high spatial frequencies in the fovea.Office of Naval Research (N00014-95-I-0409

    Digital Signal Processing (Second Edition)

    Get PDF
    This book provides an account of the mathematical background, computational methods and software engineering associated with digital signal processing. The aim has been to provide the reader with the mathematical methods required for signal analysis which are then used to develop models and algorithms for processing digital signals and finally to encourage the reader to design software solutions for Digital Signal Processing (DSP). In this way, the reader is invited to develop a small DSP library that can then be expanded further with a focus on his/her research interests and applications. There are of course many excellent books and software systems available on this subject area. However, in many of these publications, the relationship between the mathematical methods associated with signal analysis and the software available for processing data is not always clear. Either the publications concentrate on mathematical aspects that are not focused on practical programming solutions or elaborate on the software development of solutions in terms of working ‘black-boxes’ without covering the mathematical background and analysis associated with the design of these software solutions. Thus, this book has been written with the aim of giving the reader a technical overview of the mathematics and software associated with the ‘art’ of developing numerical algorithms and designing software solutions for DSP, all of which is built on firm mathematical foundations. For this reason, the work is, by necessity, rather lengthy and covers a wide range of subjects compounded in four principal parts. Part I provides the mathematical background for the analysis of signals, Part II considers the computational techniques (principally those associated with linear algebra and the linear eigenvalue problem) required for array processing and associated analysis (error analysis for example). Part III introduces the reader to the essential elements of software engineering using the C programming language, tailored to those features that are used for developing C functions or modules for building a DSP library. The material associated with parts I, II and III is then used to build up a DSP system by defining a number of ‘problems’ and then addressing the solutions in terms of presenting an appropriate mathematical model, undertaking the necessary analysis, developing an appropriate algorithm and then coding the solution in C. This material forms the basis for part IV of this work. In most chapters, a series of tutorial problems is given for the reader to attempt with answers provided in Appendix A. These problems include theoretical, computational and programming exercises. Part II of this work is relatively long and arguably contains too much material on the computational methods for linear algebra. However, this material and the complementary material on vector and matrix norms forms the computational basis for many methods of digital signal processing. Moreover, this important and widely researched subject area forms the foundations, not only of digital signal processing and control engineering for example, but also of numerical analysis in general. The material presented in this book is based on the lecture notes and supplementary material developed by the author for an advanced Masters course ‘Digital Signal Processing’ which was first established at Cranfield University, Bedford in 1990 and modified when the author moved to De Montfort University, Leicester in 1994. The programmes are still operating at these universities and the material has been used by some 700++ graduates since its establishment and development in the early 1990s. The material was enhanced and developed further when the author moved to the Department of Electronic and Electrical Engineering at Loughborough University in 2003 and now forms part of the Department’s post-graduate programmes in Communication Systems Engineering. The original Masters programme included a taught component covering a period of six months based on two semesters, each Semester being composed of four modules. The material in this work covers the first Semester and its four parts reflect the four modules delivered. The material delivered in the second Semester is published as a companion volume to this work entitled Digital Image Processing, Horwood Publishing, 2005 which covers the mathematical modelling of imaging systems and the techniques that have been developed to process and analyse the data such systems provide. Since the publication of the first edition of this work in 2003, a number of minor changes and some additions have been made. The material on programming and software engineering in Chapters 11 and 12 has been extended. This includes some additions and further solved and supplementary questions which are included throughout the text. Nevertheless, it is worth pointing out, that while every effort has been made by the author and publisher to provide a work that is error free, it is inevitable that typing errors and various ‘bugs’ will occur. If so, and in particular, if the reader starts to suffer from a lack of comprehension over certain aspects of the material (due to errors or otherwise) then he/she should not assume that there is something wrong with themselves, but with the author

    UV-pump IR-probe Spectroscopy of Molecules with Time-Resolution reaching the 10-fs Range

    Get PDF

    An Overview of LISA Data Analysis Algorithms

    Full text link
    The development of search algorithms for gravitational wave sources in the LISA data stream is currently a very active area of research. It has become clear that not only does difficulty lie in searching for the individual sources, but in the case of galactic binaries, evaluating the fidelity of resolved sources also turns out to be a major challenge in itself. In this article we review the current status of developed algorithms for galactic binary, non-spinning supermassive black hole binary and extreme mass ratio inspiral sources. While covering the vast majority of algorithms, we will highlight those that represent the state of the art in terms of speed and accuracy.Comment: 21 pages. Invited highlight article appearing in issue 01 of Gravitational Waves Notes, "GW Notes", edited by Pau Amaro-Seoane and Bernard F. Schutz at: http://brownbag.lisascience.org/lisa-gw-notes

    Biologically inspired feature extraction for rotation and scale tolerant pattern analysis

    Get PDF
    Biologically motivated information processing has been an important area of scientific research for decades. The central topic addressed in this dissertation is utilization of lateral inhibition and more generally, linear networks with recurrent connectivity along with complex-log conformal mapping in machine based implementations of information encoding, feature extraction and pattern recognition. The reasoning behind and method for spatially uniform implementation of inhibitory/excitatory network model in the framework of non-uniform log-polar transform is presented. For the space invariant connectivity model characterized by Topelitz-Block-Toeplitz matrix, the overall network response is obtained without matrix inverse operations providing the connection matrix generating function is bound by unity. It was shown that for the network with the inter-neuron connection function expandable in a Fourier series in polar angle, the overall network response is steerable. The decorrelating/whitening characteristics of networks with lateral inhibition are used in order to develop space invariant pre-whitening kernels specialized for specific category of input signals. These filters have extremely small memory footprint and are successfully utilized in order to improve performance of adaptive neural whitening algorithms. Finally, the method for feature extraction based on localized Independent Component Analysis (ICA) transform in log-polar domain and aided by previously developed pre-whitening filters is implemented. Since output codes produced by ICA are very sparse, a small number of non-zero coefficients was sufficient to encode input data and obtain reliable pattern recognition performance
    • …
    corecore