6,289 research outputs found

    Group properties and invariant solutions of a sixth-order thin film equation in viscous fluid

    Full text link
    Using group theoretical methods, we analyze the generalization of a one-dimensional sixth-order thin film equation which arises in considering the motion of a thin film of viscous fluid driven by an overlying elastic plate. The most general Lie group classification of point symmetries, its Lie algebra, and the equivalence group are obtained. Similar reductions are performed and invariant solutions are constructed. It is found that some similarity solutions are of great physical interest such as sink and source solutions, travelling-wave solutions, waiting-time solutions, and blow-up solutions.Comment: 8 page

    Cheng Equation: A Revisit Through Symmetry Analysis

    Full text link
    The symmetry analysis of the Cheng Equation is performed. The Cheng Equation is reduced to a first-order equation of either Abel's Equations, the analytic solution of which is given in terms of special functions. Moreover, for a particular symmetry the system is reduced to the Riccati Equation or to the linear nonhomogeneous equation of Euler type. Henceforth, the general solution of the Cheng Equation with the use of the Lie theory is discussed, as also the application of Lie symmetries in a generalized Cheng equation.Comment: 10 pages. Accepted for publication in Quaestiones Mathematicae journa

    Localization and Pattern Formation in Quantum Physics. II. Waveletons in Quantum Ensembles

    Full text link
    In this second part we present a set of methods, analytical and numerical, which can describe behaviour in (non) equilibrium ensembles, both classical and quantum, especially in the complex systems, where the standard approaches cannot be applied. The key points demonstrating advantages of this approach are: (i) effects of localization of possible quantum states; (ii) effects of non-perturbative multiscales which cannot be calculated by means of perturbation approaches; (iii) effects of formation of complex/collective quantum patterns from localized modes and classification and possible control of the full zoo of quantum states, including (meta) stable localized patterns (waveletons). We demonstrate the appearance of nontrivial localized (meta) stable states/patterns in a number of collective models covered by the (quantum)/(master) hierarchy of Wigner-von Neumann-Moyal-Lindblad equations, which are the result of ``wignerization'' procedure (Weyl-Wigner-Moyal quantization) of classical BBGKY kinetic hierarchy, and present the explicit constructions for exact analytical/numerical computations (fast convergent variational-wavelet representation). Numerical modeling shows the creation of different internal structures from localized modes, which are related to the localized (meta) stable patterns (waveletons), entangled ensembles (with subsequent decoherence) and/or chaotic-like type of behaviour.Comment: LaTeX2e, spie.cls, 13 pages, 6 figures, submitted to Proc. of SPIE Meeting, The Nature of Light: What is a Photon? Optics & Photonics, SP200, San Diego, CA, July-August, 200

    Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty

    Get PDF
    We study non-Hermitian quantum mechanics in the presence of a minimal length. In particular we obtain exact solutions of a non-Hermitian displaced harmonic oscillator and the Swanson model with minimal length uncertainty. The spectrum in both the cases are found to be real. It is also shown that the models are η\eta pseudo-Hermitian and the metric operator is found explicitly in both the cases
    corecore