74 research outputs found

    Methods and Applications of 3D Ground Crop Analysis Using LiDAR Technology: A Survey

    Get PDF
    Light Detection and Ranging (LiDAR) technology is positioning itself as one of the most effective non-destructive methods to collect accurate information on ground crop fields, as the analysis of the three-dimensional models that can be generated with it allows for quickly measuring several key parameters (such as yield estimations, aboveground biomass, vegetation indexes estimation, perform plant phenotyping, and automatic control of agriculture robots or machinery, among others). In this survey, we systematically analyze 53 research papers published between 2005 and 2022 that involve significant use of the LiDAR technology applied to the three-dimensional analysis of ground crops. Different dimensions are identified for classifying the surveyed papers (including application areas, crop species under study, LiDAR scanner technologies, mounting platform technologies, and the use of additional instrumentation and software tools). From our survey, we draw relevant conclusions about the use of LiDAR technologies, such as identifying a hierarchy of different scanning platforms and their frequency of use as well as establishing the trade-off between the economic costs of deploying LiDAR and the agronomically relevant information that effectively can be acquired. We also conclude that none of the approaches under analysis tackles the problem associated with working with multiple species with the same setup and configuration, which shows the need for instrument calibration and algorithmic fine tuning for an effective application of this technology.Fil: Micheletto, Matías Javier. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro de Investigaciones y Transferencia Golfo San Jorge. Centro de Investigaciones y Transferencia Golfo San Jorge: Sede Caleta Olivia - Santa Cruz | Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia Golfo San Jorge. Centro de Investigaciones y Transferencia Golfo San Jorge: Sede Caleta Olivia - Santa Cruz | Universidad Nacional de la Patagonia "san Juan Bosco". Centro de Investigaciones y Transferencia Golfo San Jorge. Centro de Investigaciones y Transferencia Golfo San Jorge: Sede Caleta Olivia - Santa Cruz; ArgentinaFil: Chesñevar, Carlos Iván. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Santos, Rodrigo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentin

    Remote Sensing of Biophysical Parameters

    Get PDF
    Vegetation plays an essential role in the study of the environment through plant respiration and photosynthesis. Therefore, the assessment of the current vegetation status is critical to modeling terrestrial ecosystems and energy cycles. Canopy structure (LAI, fCover, plant height, biomass, leaf angle distribution) and biochemical parameters (leaf pigmentation and water content) have been employed to assess vegetation status and its dynamics at scales ranging from kilometric to decametric spatial resolutions thanks to methods based on remote sensing (RS) data.Optical RS retrieval methods are based on the radiative transfer processes of sunlight in vegetation, determining the amount of radiation that is measured by passive sensors in the visible and infrared channels. The increased availability of active RS (radar and LiDAR) data has fostered their use in many applications for the analysis of land surface properties and processes, thanks to their insensitivity to weather conditions and the ability to exploit rich structural and texture information. Optical and radar data fusion and multi-sensor integration approaches are pressing topics, which could fully exploit the information conveyed by both the optical and microwave parts of the electromagnetic spectrum.This Special Issue reprint reviews the state of the art in biophysical parameters retrieval and its usage in a wide variety of applications (e.g., ecology, carbon cycle, agriculture, forestry and food security)

    Forest and Crop Leaf Area Index Estimation Using Remote Sensing: Research Trends and Future Directions

    Get PDF
    Leaf area index (LAI) is an important vegetation leaf structure parameter in forest and agricultural ecosystems. Remote sensing techniques can provide an effective alternative to field-based observation of LAI. Differences in canopy structure result in different sensor types (active or passive), platforms (terrestrial, airborne, or satellite), and models being appropriate for the LAI estimation of forest and agricultural systems. This study reviews the application of remote sensing-based approaches across different system configurations (passive, active, and multisource sensors on different collection platforms) that are used to estimate forest and crop LAI and explores uncertainty analysis in LAI estimation. A comparison of the difference in LAI estimation for forest and agricultural applications given the different structure of these ecosystems is presented, particularly as this relates to spatial scale. The ease of use of empirical models supports these as the preferred choice for forest and crop LAI estimation. However, performance variation among different empirical models for forest and crop LAI estimation limits the broad application of specific models. The development of models that facilitate the strategic incorporation of local physiology and biochemistry parameters for specific forests and crop growth stages from various temperature zones could improve the accuracy of LAI estimation models and help develop models that can be applied more broadly. In terms of scale issues, both spectral and spatial scales impact the estimation of LAI. Exploration of the quantitative relationship between scales of data from different sensors could help forest and crop managers more appropriately and effectively apply different data sources. Uncertainty coming from various sources results in reduced accuracy in estimating LAI. While Bayesian approaches have proven effective to quantify LAI estimation uncertainty based on the uncertainty of model inputs, there is still a need to quantify uncertainty from remote sensing data source, ground measurements and related environmental factors to mitigate the impacts of model uncertainty and improve LAI estimation

    Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    Get PDF
    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given

    Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    Get PDF
    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given

    LAI estimation based on physical model combining airborne LiDAR waveform and Sentinel-2 imagery

    Get PDF
    Leaf area index (LAI) is an important biophysical parameter of vegetation and serves as a significant indicator for assessing forest ecosystems. Multi-source remote sensing data enables large-scale and dynamic surface observations, providing effective data for quantifying various indices in forest and evaluating ecosystem changes. However, employing single-source remote sensing spectral or LiDAR waveform data poses limitations for LAI inversion, making the integration of multi-source remote sensing data a trend. Currently, the fusion of active and passive remote sensing data for LAI inversion primarily relies on empirical models, which are mainly constructed based on field measurements and do not provide a good explanation of the fusion mechanism. In this study, we aimed to estimate LAI based on physical model using both spectral imagery and LiDAR waveform, exploring whether data fusion improved the accuracy of LAI inversion. Specifically, based on the physical model geometric-optical and radiative transfer (GORT), a fusion strategy was designed for LAI inversion. To ensure inversion accuracy, we enhanced the data processing by introducing a constraint-based EM waveform decomposition method. Considering the spatial heterogeneity of canopy/ground reflectivity ratio in regional forests, calculation strategy was proposed to improve this parameter in inversion model. The results showed that the constraint-based EM waveform decomposition method improved the decomposition accuracy with an average 12% reduction in RMSE, yielding more accurate waveform energy parameters. The proposed calculation strategy for the canopy/ground reflectivity ratio, considering dynamic variation of parameter, effectively enhanced previous research that relied on a fixed value, thereby improving the inversion accuracy that increasing on the correlation by 5% to 10% and on R2 by 62.5% to 132.1%. Based on the inversion strategy we proposed, data fusion could effectively be used for LAI inversion. The inversion accuracy achieved using both spectral and LiDAR data (correlation=0.81, R2 = 0.65, RMSE=1.01) surpassed that of using spectral data or LiDAR alone. This study provides a new inversion strategy for large-scale and high-precision LAI inversion, supporting the field of LAI research

    Three dimensional estimation of vegetation moisture content using dual-wavelength terrestrial laser scanning

    Get PDF
    PhD ThesisLeaf Equivalent Water Thickness (EWT) is a water status metric widely used in vegetation health monitoring. Optical Remote Sensing (RS) data, spaceborne and airborne, can be used to estimate canopy EWT at landscape level, but cannot provide information about EWT vertical heterogeneity, or estimate EWT predawn. Dual-wavelength Terrestrial Laser Scanning (TLS) can overcome these limitations, as TLS intensity data, following radiometric corrections, can be used to estimate EWT in three dimensions (3D). In this study, a Normalized Difference Index (NDI) of 808 nm wavelength, utilized in the Leica P20 TLS instrument, and 1550 nm wavelength, employed in the Leica P40 and P50 TLS systems, was used to produce 3D EWT estimates at canopy level. Intensity correction models were developed, and NDI was found to be able to minimize the incidence angle and leaf internal structure effects. Multiple data collection campaigns were carried out. An indoors dry-down experiment revealed a strong correlation between NDI and EWT at leaf level. At canopy level, 3D EWT estimates were generated with a relative error of 3 %. The method was transferred to a mixed-species broadleaf forest plot and 3D EWT estimates were generated with relative errors < 7 % across four different species. Next, EWT was estimated in six short-rotation willow plots during leaf senescence with relative errors < 8 %. Furthermore, a broadleaf mixed-species urban tree plot was scanned during and two months after a heatwave, and EWT temporal changes were successfully detected. Relative error in EWT estimates was 6 % across four tree species. The last step in this research was to study the effects of EWT vertical heterogeneity on forest plot reflectance. Two virtual forest plots were reconstructed in the Discrete Anisotropic Radiative Transfer (DART) model. 3D EWT estimates from TLS were utilized in the model and Sentinel-2A bands were simulated. The simulations revealed that the top four to five metres of canopy dominated the plot reflectance. The satellite sensor was not able to detect severe water stress that started in the lower canopy layers. This study showed the potential of using dual-wavelength TLS to provide important insights into the EWT distribution within the canopy, by mapping the EWT at canopy level in 3D. EWT was found to vary vertically within the canopy, with EWT and Leaf Mass per Area (LMA) being highly correlated, suggesting that sun leaves were able to hold more moisture than shade leaves. The EWT vertical profiles varied between species, and trees reacted in different ways during drought conditions, losing moisture from different canopy layers. The proposed method can provide time series of the change in EWT at very high spatial and temporal resolutions, as TLS instruments are active sensors, independent of the solar illumination. It also has the potential to provide EWT estimates at the landscape level, if coupled with automatic tree ii segmentation and leaf-wood separation techniques, and thus filling the gaps in the time series produced from satellite data. In addition, the technique can potentially allow the characterisation of whole-tree leaf water status and total water content, by combining the EWT estimates with Leaf Area Index (LAI) measurements, providing new insights into forest health and tree physiology.Egyptian Ministry of Higher Educatio

    Characterizing Dryland Ecosystems Using Remote Sensing and Dynamic Global Vegetation Modeling

    Get PDF
    Drylands include all terrestrial regions where the production of crops, forage, wood and other ecosystem services are limited by water. These ecosystems cover approximately 40% of the earth terrestrial surface and accommodate more than 2 billion people (Millennium Ecosystem Assessment, 2005). Moreover, the interannual variability of the global carbon budget is strongly regulated by vegetation dynamics in drylands. Understanding the dynamics of such ecosystems is significant for assessing the potential for and impacts of natural or anthropogenic disturbances and mitigation planning, and a necessary step toward enhancing the economic and social well-being of dryland communities in a sustainable manner (Global Drylands: A UN system-wide response, 2011). In this research, a combination of remote sensing, field data collection, and ecosystem modeling were used to establish an integrated framework for semi-arid ecosystems dynamics monitoring. Foliar nitrogen (N) plays an important role in vegetation processes such as photosynthesis and there is wide interest in retrieving this variable from hyperspectral remote sensing data. In this study, I used the theory of canopy spectral invariants (AKA p-theory) to understand the role of canopy structure and soil in the retrieval of foliar N from hyperspectral data and machine learning techniques. The results of this study showed the inconsistencies among different machine learning techniques used for estimating N. Using p-theory, I demonstrated that soil can contribute up to 95% to the total radiation budget of the canopy. I suggested an alternative approach to study photosynthesis is the use of dynamic global vegetation models (DGVMs). Gross primary production (GPP) is the apparent ecosystem scale photosynthesis that can be estimated using DGVMs. In this study, I performed a thorough sensitivity analysis and calibrated the Ecosystem Demography (EDv2.2) model along an elevation gradient in a dryland study area. I investigated the GPP capacity and activity by comparing the EDv2.2 GPP with flux towers and remote sensing products. The overall results showed that EDv2.2 performed well in capturing GPP capacity and its long term trend at lower elevation sites within the study area; whereas the model performed worse at higher elevations likely due to the change in vegetation community. I discussed that adding more heterogeneity and modifying ecosystem processes such as phenology and plant hydraulics in ED.v2.2 will improve its application to higher elevation ecosystems where there is more vegetation production. And finally, I developed an integrated hyperspectral-lidar framework for regional mapping of xeric and mesic vegetation in the study area. I showed that by considering spectral shape and magnitude, canopy structure and landscape features (riparian zone), we can develop a straightforward algorithm for vegetation mapping in drylands. This framework is simple, easy to interpret and consistent with our ecological understanding of vegetation distribution in drylands over large areas. Collectively, the results I present in this dissertation demonstrate the potential for advanced remote sensing and modeling to help us better understand ecosystem processes in drylands
    corecore