536 research outputs found

    Cascaded Segmentation-Detection Networks for Word-Level Text Spotting

    Full text link
    We introduce an algorithm for word-level text spotting that is able to accurately and reliably determine the bounding regions of individual words of text "in the wild". Our system is formed by the cascade of two convolutional neural networks. The first network is fully convolutional and is in charge of detecting areas containing text. This results in a very reliable but possibly inaccurate segmentation of the input image. The second network (inspired by the popular YOLO architecture) analyzes each segment produced in the first stage, and predicts oriented rectangular regions containing individual words. No post-processing (e.g. text line grouping) is necessary. With execution time of 450 ms for a 1000-by-560 image on a Titan X GPU, our system achieves the highest score to date among published algorithms on the ICDAR 2015 Incidental Scene Text dataset benchmark.Comment: 7 pages, 8 figure

    Deep Learning of Atomically Resolved Scanning Transmission Electron Microscopy Images: Chemical Identification and Tracking Local Transformations

    Full text link
    Recent advances in scanning transmission electron and scanning probe microscopies have opened exciting opportunities in probing the materials structural parameters and various functional properties in real space with angstrom-level precision. This progress has been accompanied by an exponential increase in the size and quality of datasets produced by microscopic and spectroscopic experimental techniques. These developments necessitate adequate methods for extracting relevant physical and chemical information from the large datasets, for which a priori information on the structures of various atomic configurations and lattice defects is limited or absent. Here we demonstrate an application of deep neural networks to extract information from atomically resolved images including location of the atomic species and type of defects. We develop a 'weakly-supervised' approach that uses information on the coordinates of all atomic species in the image, extracted via a deep neural network, to identify a rich variety of defects that are not part of an initial training set. We further apply our approach to interpret complex atomic and defect transformation, including switching between different coordination of silicon dopants in graphene as a function of time, formation of peculiar silicon dimer with mixed 3-fold and 4-fold coordination, and the motion of molecular 'rotor'. This deep learning based approach resembles logic of a human operator, but can be scaled leading to significant shift in the way of extracting and analyzing information from raw experimental data

    LiDAR-assisted Large-scale Privacy Protection in Street-view Cycloramas

    Get PDF
    Recently, privacy has a growing importance in several domains, especially in street-view images. The conventional way to achieve this is to automatically detect and blur sensitive information from these images. However, the processing cost of blurring increases with the ever-growing resolution of images. We propose a system that is cost-effective even after increasing the resolution by a factor of 2.5. The new system utilizes depth data obtained from LiDAR to significantly reduce the search space for detection, thereby reducing the processing cost. Besides this, we test several detectors after reducing the detection space and provide an alternative solution based on state-of-the-art deep learning detectors to the existing HoG-SVM-Deep system that is faster and has a higher performance.Comment: Accepted at Electronic Imaging 201

    ADD: An Automatic Desensitization Fisheye Dataset for Autonomous Driving

    Full text link
    Autonomous driving systems require many images for analyzing the surrounding environment. However, there is fewer data protection for private information among these captured images, such as pedestrian faces or vehicle license plates, which has become a significant issue. In this paper, in response to the call for data security laws and regulations and based on the advantages of large Field of View(FoV) of the fisheye camera, we build the first Autopilot Desensitization Dataset, called ADD, and formulate the first deep-learning-based image desensitization framework, to promote the study of image desensitization in autonomous driving scenarios. The compiled dataset consists of 650K images, including different face and vehicle license plate information captured by the surround-view fisheye camera. It covers various autonomous driving scenarios, including diverse facial characteristics and license plate colors. Then, we propose an efficient multitask desensitization network called DesCenterNet as a benchmark on the ADD dataset, which can perform face and vehicle license plate detection and desensitization tasks. Based on ADD, we further provide an evaluation criterion for desensitization performance, and extensive comparison experiments have verified the effectiveness and superiority of our method on image desensitization

    MTRNet: A Generic Scene Text Eraser

    Full text link
    Text removal algorithms have been proposed for uni-lingual scripts with regular shapes and layouts. However, to the best of our knowledge, a generic text removal method which is able to remove all or user-specified text regions regardless of font, script, language or shape is not available. Developing such a generic text eraser for real scenes is a challenging task, since it inherits all the challenges of multi-lingual and curved text detection and inpainting. To fill this gap, we propose a mask-based text removal network (MTRNet). MTRNet is a conditional adversarial generative network (cGAN) with an auxiliary mask. The introduced auxiliary mask not only makes the cGAN a generic text eraser, but also enables stable training and early convergence on a challenging large-scale synthetic dataset, initially proposed for text detection in real scenes. What's more, MTRNet achieves state-of-the-art results on several real-world datasets including ICDAR 2013, ICDAR 2017 MLT, and CTW1500, without being explicitly trained on this data, outperforming previous state-of-the-art methods trained directly on these datasets.Comment: Presented at ICDAR2019 Conferenc

    Robust Iris Segmentation Based on Fully Convolutional Networks and Generative Adversarial Networks

    Full text link
    The iris can be considered as one of the most important biometric traits due to its high degree of uniqueness. Iris-based biometrics applications depend mainly on the iris segmentation whose suitability is not robust for different environments such as near-infrared (NIR) and visible (VIS) ones. In this paper, two approaches for robust iris segmentation based on Fully Convolutional Networks (FCNs) and Generative Adversarial Networks (GANs) are described. Similar to a common convolutional network, but without the fully connected layers (i.e., the classification layers), an FCN employs at its end a combination of pooling layers from different convolutional layers. Based on the game theory, a GAN is designed as two networks competing with each other to generate the best segmentation. The proposed segmentation networks achieved promising results in all evaluated datasets (i.e., BioSec, CasiaI3, CasiaT4, IITD-1) of NIR images and (NICE.I, CrEye-Iris and MICHE-I) of VIS images in both non-cooperative and cooperative domains, outperforming the baselines techniques which are the best ones found so far in the literature, i.e., a new state of the art for these datasets. Furthermore, we manually labeled 2,431 images from CasiaT4, CrEye-Iris and MICHE-I datasets, making the masks available for research purposes.Comment: Accepted for presentation at the Conference on Graphics, Patterns and Images (SIBGRAPI) 201
    • …
    corecore