1,189 research outputs found

    License Plate Detection based on Genetic Neural Networks, Morphology, and Active Contours

    Get PDF
    This paper describes a new method for License Plate Detection based on Genetic Neural Networks, Morphology, and Active Contours. Given an image is divided into several virtual regions sized 10×10 pixels, applying several performance algorithms within each virtual region, algorithms such as edge detection, histograms, and binary thresholding, etc. These results are used as inputs for a Genetic Neural Network, which provides the initial selection for the probable situation of the license plate. Further reïŹnement is applied using active contours to ïŹt the output tightly to the license plate. With a small and well–chosen subset of images, the system is able to deal with a large variety of images with real–world characteristics obtaining great precision in the detection. The eïŹ€ectiveness for the proposed method is very high (97%). This method will be the ïŹrst stage of a surveillance system which takes into account not only the actual license plate but also the model of the car to determine if a car should be taken as a threat

    Vehicle license plate detection and recognition

    Get PDF
    "December 2013.""A Thesis presented to the Faculty of the Graduate School at the University of Missouri In Partial Fulfillment of the Requirements for the Degree Master of Science."Thesis supervisor: Dr. Zhihai He.In this work, we develop a license plate detection method using a SVM (Support Vector Machine) classifier with HOG (Histogram of Oriented Gradients) features. The system performs window searching at different scales and analyzes the HOG feature using a SVM and locates their bounding boxes using a Mean Shift method. Edge information is used to accelerate the time consuming scanning process. Our license plate detection results show that this method is relatively insensitive to variations in illumination, license plate patterns, camera perspective and background variations. We tested our method on 200 real life images, captured on Chinese highways under different weather conditions and lighting conditions. And we achieved a detection rate of 100%. After detecting license plates, alignment is then performed on the plate candidates. Conceptually, this alignment method searches neighbors of the bounding box detected, and finds the optimum edge position where the outside regions are very different from the inside regions of the license plate, from color's perspective in RGB space. This method accurately aligns the bounding box to the edges of the plate so that the subsequent license plate segmentation and recognition can be performed accurately and reliably. The system performs license plate segmentation using global alignment on the binary license plate. A global model depending on the layout of license plates is proposed to segment the plates. This model searches for the optimum position where the characters are all segmented but not chopped into pieces. At last, the characters are recognized by another SVM classifier, with a feature size of 576, including raw features, vertical and horizontal scanning features. Our character recognition results show that 99% of the digits are successfully recognized, while the letters achieve an recognition rate of 95%. The license plate recognition system was then incorporated into an embedded system for parallel computing. Several TS7250 and an auxiliary board are used to simulIncludes bibliographical references (pages 67-73)

    In vivo two-photon imaging of the embryonic cortex reveals spontaneous ketamine-sensitive calcium activity

    Get PDF
    Prior to sensory experience spontaneous activity appears to play a fundamental role in the correct formation of prominent functional features of different cortical regions. The use of anaesthesia during pregnancy such as ketamine is largely considered to negatively affect neuronal development by interfering with synaptic transmission. Interestingly, the characteristics of spontaneous activity as well as the acute functional effects of maternal anaesthesia remain largely untested in the embryonic cortex in vivo. In the present work, we performed in vivo imaging of spontaneous calcium activity and cell motility in the marginal zone of the cortex of E14-15 embryos connected to the mother. We made use of a preparation where the blood circulation from the mother through the umbilical cord is preserved and fluctuations in intracellular calcium in the embryonic frontal cortex are acquired using two-photon imaging. We found that spontaneous transients were either sporadic or correlated in clusters of neuronal ensembles at this age. These events were not sensitive to maternal isoflurane anaesthesia but were strongly inhibited by acute in situ or maternal application of low concentration of the anaesthetic ketamine (a non-competitive antagonist of NMDA receptors). Moreover, simultaneous imaging of cell motility revealed a correlated strong sensitivity to ketamine. These results show that anaesthetic compounds can differ significantly in their impact on spontaneous early cortical activity as well as motility of cells in the marginal zone. The effects found in this study may be relevant in the etiology of heightened vulnerability to cerebral dysfunction associated with the use of ketamine during pregnancy.Peer reviewe

    Vision-based Detection of Mobile Device Use While Driving

    Get PDF
    The aim of this study was to explore the feasibility of an automatic vision-based solution to detect drivers using mobile devices while operating their vehicles. The proposed system comprises of modules for vehicle license plate localisation, driver’s face detection and mobile phone interaction. The system were then implemented and systematically evaluated using suitable image datasets. The strengths and weaknesses of individual modules were analysed and further recommendations made to improve the overall system’s performance

    Decellularised extracellular matrix-derived peptides from neural retina and retinal pigment epithelium enhance the expression of synaptic markers and light responsiveness of human pluripotent stem cell derived retinal organoids

    Get PDF
    Tissue specific extracellular matrices (ECM) provide structural support and enable access to molecular signals and metabolites, which are essential for directing stem cell renewal and differentiation. To mimic this phenomenon in vitro, tissue decellularisation approaches have been developed, resulting in the generation of natural ECM scaffolds that have comparable physical and biochemical properties of the natural tissues and are currently gaining traction in tissue engineering and regenerative therapies due to the ease of standardised production, and constant availability. In this manuscript we report the successful generation of decellularised ECM-derived peptides from neural retina (decel NR) and retinal pigment epithelium (decel RPE), and their impact on differentiation of human pluripotent stem cells (hPSCs) to retinal organoids. We show that culture media supplementation with decel RPE and RPE-conditioned media (CM RPE) significantly increases the generation of rod photoreceptors, whilst addition of decel NR and decel RPE significantly enhances ribbon synapse marker expression and the light responsiveness of retinal organoids. Photoreceptor maturation, formation of correct synapses between retinal cells and recording of robust light responses from hPSC-derived retinal organoids remain unresolved challenges for the field of regenerative medicine. Enhanced rod photoreceptor differentiation, synaptogenesis and light response in response to addition of decellularised matrices from RPE and neural retina as shown herein provide a novel and substantial advance in generation of retinal organoids for drug screening, tissue engineering and regenerative medicine

    Data-analysis strategies for image-based cell profiling

    Get PDF
    Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.Peer reviewe

    Advances in Character Recognition

    Get PDF
    This book presents advances in character recognition, and it consists of 12 chapters that cover wide range of topics on different aspects of character recognition. Hopefully, this book will serve as a reference source for academic research, for professionals working in the character recognition field and for all interested in the subject

    Semi-automatic GUI platform to characterize brain development in preterm children using ultrasound images

    Get PDF
    The third trimester of pregnancy is the most critical period for human brain development, during which significant changes occur in the morphology of the brain. The development of sulci and gyri allows for a considerable increase in the brain surface. In preterm newborns, these changes occur in an extrauterine environment that may cause a disruption of the normal brain maturation process. We hypothesize that a normalized atlas of brain maturation with cerebral ultrasound images from birth to term equivalent age will help clinicians assess these changes. This work proposes a semi-automatic Graphical User Interface (GUI) platform for segmenting the main cerebral sulci in the clinical setting from ultrasound images. This platform has been obtained from images of a cerebral ultrasound neonatal database images provided by two clinical researchers from the Hospital Sant Joan de DĂ©u in Barcelona, Spain. The primary objective is to provide a user-friendly design platform for clinicians for running and visualizing an atlas of images validated by medical experts. This GUI offers different segmentation approaches and pre-processing tools and is user-friendly and designed for running, visualizing images, and segmenting the principal sulci. The presented results are discussed in detail in this paper, providing an exhaustive analysis of the proposed approach’s effectiveness.Peer ReviewedPostprint (published version

    Vehicle make and model recognition for intelligent transportation monitoring and surveillance.

    Get PDF
    Vehicle Make and Model Recognition (VMMR) has evolved into a significant subject of study due to its importance in numerous Intelligent Transportation Systems (ITS), such as autonomous navigation, traffic analysis, traffic surveillance and security systems. A highly accurate and real-time VMMR system significantly reduces the overhead cost of resources otherwise required. The VMMR problem is a multi-class classification task with a peculiar set of issues and challenges like multiplicity, inter- and intra-make ambiguity among various vehicles makes and models, which need to be solved in an efficient and reliable manner to achieve a highly robust VMMR system. In this dissertation, facing the growing importance of make and model recognition of vehicles, we present a VMMR system that provides very high accuracy rates and is robust to several challenges. We demonstrate that the VMMR problem can be addressed by locating discriminative parts where the most significant appearance variations occur in each category, and learning expressive appearance descriptors. Given these insights, we consider two data driven frameworks: a Multiple-Instance Learning-based (MIL) system using hand-crafted features and an extended application of deep neural networks using MIL. Our approach requires only image level class labels, and the discriminative parts of each target class are selected in a fully unsupervised manner without any use of part annotations or segmentation masks, which may be costly to obtain. This advantage makes our system more intelligent, scalable, and applicable to other fine-grained recognition tasks. We constructed a dataset with 291,752 images representing 9,170 different vehicles to validate and evaluate our approach. Experimental results demonstrate that the localization of parts and distinguishing their discriminative powers for categorization improve the performance of fine-grained categorization. Extensive experiments conducted using our approaches yield superior results for images that were occluded, under low illumination, partial camera views, or even non-frontal views, available in our real-world VMMR dataset. The approaches presented herewith provide a highly accurate VMMR system for rea-ltime applications in realistic environments.\\ We also validate our system with a significant application of VMMR to ITS that involves automated vehicular surveillance. We show that our application can provide law inforcement agencies with efficient tools to search for a specific vehicle type, make, or model, and to track the path of a given vehicle using the position of multiple cameras
    • 

    corecore