3,439 research outputs found

    Bayes Factors for Forensic Decision Analyses with R

    Get PDF
    Bayes Factors for Forensic Decision Analyses with R provides a self-contained introduction to computational Bayesian statistics using R. With its primary focus on Bayes factors supported by data sets, this book features an operational perspective, practical relevance, and applicability—keeping theoretical and philosophical justifications limited. It offers a balanced approach to three naturally interrelated topics: – Probabilistic Inference: Relies on the core concept of Bayesian inferential statistics, to help practicing forensic scientists in the logical and balanced evaluation of the weight of evidence. – Decision Making: Features how Bayes factors are interpreted in practical applications to help address questions of decision analysis involving the use of forensic science in the law. – Operational Relevance: Combines inference and decision, backed up with practical examples and complete sample code in R, including sensitivity analyses and discussion on how to interpret results in context. Over the past decades, probabilistic methods have established a firm position as a reference approach for the management of uncertainty in virtually all areas of science, including forensic science, with Bayes' theorem providing the fundamental logical tenet for assessing how new information—scientific evidence—ought to be weighed. Central to this approach is the Bayes factor, which clarifies the evidential meaning of new information, by providing a measure of the change in the odds in favor of a proposition of interest, when going from the prior to the posterior distribution. Bayes factors should guide the scientist's thinking about the value of scientific evidence and form the basis of logical and balanced reporting practices, thus representing essential foundations for rational decision making under uncertainty. This book would be relevant to students, practitioners, and applied statisticians interested in inference and decision analyses in the critical field of forensic science. It could be used to support practical courses on Bayesian statistics and decision theory at both undergraduate and graduate levels, and will be of equal interest to forensic scientists and practitioners of Bayesian statistics for driving their evaluations and the use of R for their purposes

    Bayes Factors for Forensic Decision Analyses with R

    Get PDF
    Bayes Factors for Forensic Decision Analyses with R provides a self-contained introduction to computational Bayesian statistics using R. With its primary focus on Bayes factors supported by data sets, this book features an operational perspective, practical relevance, and applicability—keeping theoretical and philosophical justifications limited. It offers a balanced approach to three naturally interrelated topics: – Probabilistic Inference: Relies on the core concept of Bayesian inferential statistics, to help practicing forensic scientists in the logical and balanced evaluation of the weight of evidence. – Decision Making: Features how Bayes factors are interpreted in practical applications to help address questions of decision analysis involving the use of forensic science in the law. – Operational Relevance: Combines inference and decision, backed up with practical examples and complete sample code in R, including sensitivity analyses and discussion on how to interpret results in context. Over the past decades, probabilistic methods have established a firm position as a reference approach for the management of uncertainty in virtually all areas of science, including forensic science, with Bayes' theorem providing the fundamental logical tenet for assessing how new information—scientific evidence—ought to be weighed. Central to this approach is the Bayes factor, which clarifies the evidential meaning of new information, by providing a measure of the change in the odds in favor of a proposition of interest, when going from the prior to the posterior distribution. Bayes factors should guide the scientist's thinking about the value of scientific evidence and form the basis of logical and balanced reporting practices, thus representing essential foundations for rational decision making under uncertainty. This book would be relevant to students, practitioners, and applied statisticians interested in inference and decision analyses in the critical field of forensic science. It could be used to support practical courses on Bayesian statistics and decision theory at both undergraduate and graduate levels, and will be of equal interest to forensic scientists and practitioners of Bayesian statistics for driving their evaluations and the use of R for their purposes

    Bayes Factors for Forensic Decision Analyses with R

    Get PDF
    Bayes Factors for Forensic Decision Analyses with R provides a self-contained introduction to computational Bayesian statistics using R. With its primary focus on Bayes factors supported by data sets, this book features an operational perspective, practical relevance, and applicability—keeping theoretical and philosophical justifications limited. It offers a balanced approach to three naturally interrelated topics: Probabilistic Inference - Relies on the core concept of Bayesian inferential statistics, to help practicing forensic scientists in the logical and balanced evaluation of the weight of evidence. Decision Making - Features how Bayes factors are interpreted in practical applications to help address questions of decision analysis involving the use of forensic science in the law. Operational Relevance - Combines inference and decision, backed up with practical examples and complete sample code in R, including sensitivity analyses and discussion on how to interpret results in context. Over the past decades, probabilistic methods have established a firm position as a reference approach for the management of uncertainty in virtually all areas of science, including forensic science, with Bayes' theorem providing the fundamental logical tenet for assessing how new information—scientific evidence—ought to be weighed. Central to this approach is the Bayes factor, which clarifies the evidential meaning of new information, by providing a measure of the change in the odds in favor of a proposition of interest, when going from the prior to the posterior distribution. Bayes factors should guide the scientist's thinking about the value of scientific evidence and form the basis of logical and balanced reporting practices, thus representing essential foundations for rational decision making under uncertainty. This book would be relevant to students, practitioners, and applied statisticians interested in inference and decision analyses in the critical field of forensic science. It could be used to support practical courses on Bayesian statistics and decision theory at both undergraduate and graduate levels, and will be of equal interest to forensic scientists and practitioners of Bayesian statistics for driving their evaluations and the use of R for their purposes. This book is Open Access

    The Evolution of Cell Communication: The Road not Taken.

    Get PDF
    In the post-genomic era the complex problem of evolutionary biology can be tackled from the top-down, the bottom-up, or from the middle-out. Given the emergent and contingent nature of this process, we have chosen to take the latter approach, both as a mechanistic link to developmental biology and as a rational means of identifying signaling mechanisms based on their functional genomic significance. Using this approach, we have been able to configure a working model for lung evolution by reverse-engineering lung surfactant from the mammalian lung to the swim bladder of fish. Based on this archetypal cell-molecular model, we have reduced evolutionary biology to cell communication, starting with unicellular organisms communicating with the environment, followed by cell-cell communication to generate metazoa, culminating in the communication of genetic information between generations, i.e. reproduction. This model predicts the evolution of physiologic systems-including development, homeostasis, disease, regeneration/repair, and aging- as a logical consequence of biology reducing entropy. This approach provides a novel and robust way of formulating refutable, testable hypotheses to determine the ultimate origins and first principles of physiology, providing candidate genes for phenotypes hypothesized to have mediated evolutionary changes in structure and/or function. Ultimately, it will form the basis for predictive medicine and molecular bioethics, rather than merely showing associations between genes and pathology, which is an unequivocal Just So Story. In this new age of genomics, our reach must exceed our grasp

    Special Libraries, December 1953

    Get PDF
    Volume 44, Issue 10https://scholarworks.sjsu.edu/sla_sl_1953/1009/thumbnail.jp

    Professor A.L. Bowley’s theory of the representative method

    Get PDF
    Arthur. L. Bowley (1869-1957) first advocated the use of surveys--the "representative method"--in 1906 and started to conduct surveys of economic and social conditions in 1912. Bowley's 1926 memorandum for the International Statistical Institute on the "Measurement of the precision attained in sampling" was the first large-scale theoretical treatment of sample surveys as he conducted them. This paper examines Bowley's arguments in the context of the statistical inference theory of the time. The great influence on Bowley's conception of statistical inference was F. Y. Edgeworth but by 1926 R. A. Fisher was on the scene and was attacking Bayesian methods and promoting a replacement of his own. Bowley defended his Bayesian method against Fisher and against Jerzy Neyman when the latter put forward his concept of a confidence interval and applied it to the representative method <br><br> Keywords; history of statistics, sampling theory, bayesian inference
    corecore