5 research outputs found

    A holistic multi-purpose life logging framework

    Get PDF
    Die Paradigm des Life-Loggings verspricht durch den Vorschlag eines elektronisches GedĂ€chtnisses dem menschlichem GedĂ€chtnis eine komplementĂ€re Assistenz. Life-Logs sind Werkzeuge oder Systeme, die automatisch Ereignisse des Lebens des Benutzers aufnehmen. Im technischem Sinne sind es Systeme, die den Alltag durchdringen und kontinuierlich konzeptuelle Informationen aus der Umgebung des Benutzers erfassen. Teile eines so gesammelten Datensatzes könnten aufbewahrt und fĂŒr die nĂ€chsten Generationen zugĂ€nglich gemacht werden. Einige Teile sind es wert zusĂ€tzlich auch noch mit der Gesellschaft geteilt zu werden, z.B. in sozialen Netzwerken. Vom Teilen solcher Informationen profitiert sowohl der Benutzer als auch die Gesellschaft, beispielsweise durch die Verbesserung der sozialen Interaktion des Users, das ermöglichen neuer Gruppenverhaltensstudien usw. Anderseits, im Sinne der individuellen PrivatsphĂ€re, sind Life-log Informationen sehr sensibel und entsprechender Datenschutz sollte schon beim Design solcher Systeme in Betracht gezogen werden. Momentan sind Life-Logs hauptsĂ€chlich fĂŒr den spezifischen Gebrauch als GedĂ€chtnisstĂŒtzen vorgesehen. Sie sind konfiguriert um nur mit einem vordefinierten Sensorset zu arbeiten. Das bedeutet sie sind nicht flexibel genug um neue Sensoren zu akzeptieren. Sensoren sind Kernkomponenten von Life-Logs und mit steigender Sensoranzahl wĂ€chst auch die Menge der Daten die fĂŒr die Erfassung verfĂŒgbar sind. ZusĂ€tzlich bietet die Anordnung von mehreren Sensordaten bessere qualitative und quantitative Informationen ĂŒber den Status und die Umgebung (Kontext) des Benutzers. Offenheit fĂŒr Sensoren wirkt sich also sowohl fĂŒr den User als auch fĂŒr die Gemeinschaft positiv aus, indem es Potential fĂŒr multidisziplinnĂ€re Studien bietet. Zum Beispiel können Benutzer Sensoren konfigurieren um ihren Gesundheitszustand in einem gewissen Zeitraum zu ĂŒberwachen und das System danach Ă€ndern um es wieder als GedĂ€chtnisstĂŒtze zu verwenden. In dieser Dissertation stelle ich ein Life-Log Framework vor, das offen fĂŒr die Erweiterung und Konfiguration von Sensoren ist. Die Offenheit und Erweiterbarkeit des Frameworks wird durch eine Sensorklassiffzierung und ein flexibles Model fĂŒr die Speicherung der Life-Log Informationen unterstĂŒtzt. Das Framework ermöglicht es den BenĂŒtzern ihre Life-logs mit anderen zu teilen und unterstĂŒtzt die notwendigen Merkmale vom Life Logging. Diese beinhalten Informationssuche (durch Annotation), langfristige digitale Erhaltung, digitales Vergessen, Sicherheit und Datenschutz.The paradigm of life-logging promises a complimentary assistance to the human memory by proposing an electronic memory. Life-logs are tools or systems, which automatically record users' life events in digital format. In a technical sense, they are pervasive tools or systems which continuously sense and capture contextual information from the user's environment. A dataset will be created from the collected information and some records of this dataset are worth preserving in the long-term and enable others, in future generations, to access them. Additionally, some parts are worth sharing with society e.g. through social networks. Sharing this information with society benefits both users and society in many ways, such as augmenting users' social interaction, group behavior studies, etc. However, in terms of individual privacy, life-log information is very sensitive and during the design of such a system privacy and security should be taken into account. Currently life-logs are designed for specific purposes such as memory augmentation, but they are not flexible enough to accept new sensors. This means that they have been configured to work only with a predefined set of sensors. Sensors are the core component of life-logs and increasing the number of sensors causes more data to be available for acquisition. Moreover a composition of multiple sensor data provides better qualitative and quantitative information about users' status and their environment (context). On the other hand, sensor openness benefits both users and communities by providing appropriate capabilities for multidisciplinary studies. For instance, users can configure sensors to monitor their health status for a specific period, after which they can change the system to use it for memory augmentation. In this dissertation I propose a life-log framework which is open to extension and configuration of its sensors. Openness and extendibility, which makes the framework holistic and multi-purpose, is supported by a sensor classification and a flexible model for storing life-log information. The framework enables users to share their life-log information and supports required features for life logging. These features include digital forgetting, facilitating information retrieval (through annotation), long-term digital preservation, security and privacy

    Lesson Learned from Collecting Quantified Self Information via Mobile and Wearable Devices

    Get PDF
    The ubiquity and affordability of mobile and wearable devices has enabled us to continually and digitally record our daily life activities. Consequently, we are seeing the growth of data collection experiments in several scientific disciplines. Although these have yielded promising results, mobile and wearable data collection experiments are often restricted to a specific configuration that has been designed for a unique study goal. These approaches do not address all the real-world challenges of “continuous data collection” systems. As a result, there have been few discussions or reports about such issues that are faced when “implementing these platforms” in a practical situation. To address this, we have summarized our technical and user-centric findings from three lifelogging and Quantified Self data collection studies, which we have conducted in real-world settings, for both smartphones and smartwatches. In addition to (i) privacy and (ii) battery related issues; based on our findings we recommend further works to consider (iii) implementing multivariate reflection of the data; (iv) resolving the uncertainty and data loss; and (v) consider to minimize the manual intervention required by users. These findings have provided insights that can be used as a guideline for further Quantified Self or lifelogging studies

    Hierarchical video surveillance architecture: a chassis for video big data analytics and exploration

    Get PDF
    There is increasing reliance on video surveillance systems for systematic derivation, analysis and interpretation of the data needed for predicting, planning, evaluating and implementing public safety. This is evident from the massive number of surveillance cameras deployed across public locations. For example, in July 2013, the British Security Industry Association (BSIA) reported that over 4 million CCTV cameras had been installed in Britain alone. The BSIA also reveal that only 1.5% of these are state owned. In this paper, we propose a framework that allows access to data from privately owned cameras, with the aim of increasing the efficiency and accuracy of public safety planning, security activities, and decision support systems that are based on video integrated surveillance systems. The accuracy of results obtained from government-owned public safety infrastructure would improve greatly if privately owned surveillance systems ‘expose’ relevant video-generated metadata events, such as triggered alerts and also permit query of a metadata repository. Subsequently, a police officer, for example, with an appropriate level of system permission can query unified video systems across a large geographical area such as a city or a country to predict the location of an interesting entity, such as a pedestrian or a vehicle. This becomes possible with our proposed novel hierarchical architecture, the Fused Video Surveillance Architecture (FVSA). At the high level, FVSA comprises of a hardware framework that is supported by a multi-layer abstraction software interface. It presents video surveillance systems as an adapted computational grid of intelligent services, which is integration-enabled to communicate with other compatible systems in the Internet of Things (IoT)
    corecore