4,257 research outputs found

    Modeling and State Estimation of Lithium-Ion Battery Packs for Application in Battery Management Systems

    Get PDF
    As lithium-ion (Li-Ion) battery packs grow in popularity, so do the concerns of its safety, reliability, and cost. An efficient and robust battery management system (BMS) can help ease these concerns. By measuring the voltage, temperature, and current for each cell, the BMS can balance the battery pack, and ensure it is operating within the safety limits. In addition, these measurements can be used to estimate the remaining charge in the battery (state-of-charge (SOC)) and determine the health of the battery (state-of-health (SOH)). Accurate estimation of these battery and system variables can help improve the safety and reliability of the energy storage system (ESS). This research aims to develop high-fidelity battery models and robust SOC and SOH algorithms that have low computational cost and require minimal training data. More specifically, this work will focus on SOC and SOH estimation at the pack-level, as well as modeling and simulation of a battery pack. An accurate and computationally efficient Li-Ion battery model can be highly beneficial when developing SOC and SOH algorithms on the BMS. These models allow for software-in-the-loop (SIL) and hardware-in-the-loop (HIL) testing, where the battery pack is simulated in software. However, development of these battery models can be time-consuming, especially when trying to model the effect of temperature and SOC on the equivalent circuit model (ECM) parameters. Estimation of this relationship is often accomplished by carrying out a large number of experiments, which can be too costly for many BMS manufacturers. Therefore, the first contribution of this research is to develop a comprehensive battery model, where the ECM parameter surface is generated using a set of carefully designed experiments. This technique is compared with existing approaches from literature, and it is shown that by using the proposed method, the same degree of accuracy can be obtained while requiring significantly less experimental runs. This can be advantageous for BMS manufacturers that require a high-fidelity model but cannot afford to carry out a large number of experiments. Once a comprehensive model has been developed for SIL and HIL testing, research was carried out in advancing SOH and SOC algorithms. With respect to SOH, research was conducted in developing a steady and reliable SOH metric that can be determined at the cell level and is stable at different battery operating conditions. To meet these requirements, a moving window direct resistance estimation (DRE) algorithm is utilized, where the resistance is estimated only when the battery experiences rapid current transients. The DRE approach is then compared with more advanced resistance estimation techniques such as extended Kalman filter (EKF) and recursive least squares (RLS). It is shown that by using the proposed algorithm, the same degree of accuracy can be achieved as the more advanced methods. The DRE algorithm does, however, have a much lower computational complexity and therefore, can be implemented on a battery pack composed of hundreds of cells. Research has also been conducted in converting these raw resistance values into a stable SOH metric. First, an outlier removal technique is proposed for removing any outliers in the resistance estimates; specifically, outliers that are an artifact of the sampling rate. The technique involves using an adaptive control chart, where the bounds on the control chart change as the internal resistance of the battery varies during operation. An exponentially weighted moving average (EWMA) is then applied to filter out the noise present in the raw estimates. Finally, the resistance values are filtered once more based on temperature and battery SOC. This additional filtering ensures that the SOH value is independent of the battery operating conditions. The proposed SOH framework was validated over a 27-day period for a lithium iron phosphate (LFP) battery. The results show an accurate estimation of battery resistance over time with a mean error of 1.1% as well as a stable SOH metric. The findings are significant for BMS developers who have limited computational resources but still require a robust and reliable SOH algorithm. Concerning SOC, most publications in literature examine SOC estimation at the cell level. Determining the SOC for a battery pack can be challenging, especially an estimate that behaves logically to the battery user. This work proposes a three-level approach, where the final output from the algorithm is a well-behaved pack SOC estimate. The first level utilizes an EKF for estimating SOC while an RLS approach is used to adapt the model parameters. To reduce computational time, both algorithms will be executed on two specific cells: the first cell to charge to full and the first cell to discharge to empty. The second level consists of using the SOC estimates from these two cells and estimating a pack SOC value. Finally, a novel adaptive coulomb counting approach is proposed to ensure the pack SOC estimate behaves logically. The accuracy of the algorithm is tested using a 40 Ah Li-Ion battery. The results show that the algorithm produces accurate and stable SOC estimates. Finally, this work extends the developed comprehensive battery model to examine the effect of replacing damaged cells in a battery pack with new ones. The cells within the battery pack vary stochastically, and the performance of the entire pack is evaluated under different conditions. The results show that by changing out cells in the battery pack, the SOH of the pack can be maintained indefinitely above a specific threshold value. In situations where the cells are checked for replacement at discrete intervals, referred to as maintenance event intervals, it is found that the length of the interval is dependent on the mean time to failure of the individual cells. The simulation framework, as well as the results from this paper, can be utilized to better optimize Li-ion battery pack design in electric vehicles (EVs) and make long-term deployment of EVs more economically feasible

    Battery choice and management for New Generation Electric Vehicles

    Get PDF
    Different types of electric vehicles (EVs) have been recently designed with the aim of solving pollution problems caused by the emission of gasoline-powered engines. Environmental problems promote the adoption of new-generation electric vehicles for urban transportation. As it is well known, one of the weakest points of electric vehicles is the battery system. Vehicle autonomy and, therefore, accurate detection of battery state of charge (SoC) together with battery expected life, i.e., battery state of health, are among the major drawbacks that prevent the introduction of electric vehicles in the consumer market. The electric scooter may provide the most feasible opportunity among EVs. They may be a replacement product for the primary-use vehicle, especially in Europe and Asia, provided that drive performance, safety, and cost issues are similar to actual engine scooters. The battery system choice is a crucial item, and thanks to an increasing emphasis on vehicle range and performance, the Li-ion battery could become a viable candidate. This paper deals with the design of a battery pack based on Li-ion technology for a prototype electric scooter with high performance and autonomy. The adopted battery system is composed of a suitable number of cells series connected, featuring a high voltage level. Therefore, cell equalization and monitoring need to be provided. Due to manufacturing asymmetries, charge and discharge cycles lead to cell unbalancing, reducing battery capacity and, depending on cell type, causing safety troubles or strongly limiting the storage capacity of the full pack. No solution is available on the market at a cheap price, because of the required voltage level and performance, therefore, a dedicated battery management system was designed, that also includes a battery SoC monitoring. The proposed solution features a high capability of energy storing in braking conditions, charge equalization, overvoltage and undervoltage protection and, obviously, SoC information in order to optimize autonomy instead of performance or vice-versa

    Low-cost programmable battery dischargers and application in battery model identification

    Get PDF
    This paper describes a study where a low-cost programmable battery discharger was built from basic electronic components, the popular MATLAB programming environment, and an low-cost Arduino microcontroller board. After its components and their function are explained in detail, a case study is performed to evaluate the discharger's performance. The setup is principally suitable for any type of battery cell or small packs. Here a 7.2 V NiMH battery pack including six cells is used. Consecutive discharge current pulses are applied and the terminal voltage is measured as the output. With the measured data, battery model identification is performed using a simple equivalent circuit model containing the open circuit voltage and the internal resistance. The identification results are then tested by repeating similar tests. Consistent results demonstrate accuracy of the identified battery parameters, which also confirms the quality of the measurement. Furthermore, it is demonstrated that the identification method is fast enough to be used in real-time applications

    Electric vehicle battery parameter identification and SOC observability analysis: NiMH and Li-S case studies

    Get PDF
    In this study, a framework is proposed for battery model identification to be applied in electric vehicle energy storage systems. The main advantage of the proposed approach is having capability to handle different battery chemistries. Two case studies are investigated: nickel-metal hydride (NiMH), which is a mature battery technology, and Lithium-Sulphur (Li-S), a promising next-generation technology. Equivalent circuit battery model parametrisation is performed in both cases using the Prediction-Error Minimization (PEM) algorithm applied to experimental data. The use of identified parameters for battery state-of-charge (SOC) estimation is then discussed. It is demonstrated that the set of parameters needed can change with a different battery chemistry. In the case of NiMH, the battery’s open circuit voltage (OCV) is adequate for SOC estimation. However, Li-S battery SOC estimation can be challenging due to the chemistry’s unique features and the SOC cannot be estimated from the OCV-SOC curve alone because of its flat gradient. An observability analysis demonstrates that Li-S battery SOC is not observable using the common state-space representations in the literature. Finally, the problem’s solution is discussed using the proposed framework

    Accuracy versus simplicity in online battery model identification

    Get PDF
    This paper presents a framework for battery modeling in online, real-time applications where accuracy is important but speed is the key. The framework allows users to select model structures with the smallest number of parameters that is consistent with the accuracy requirements of the target application. The tradeoff between accuracy and speed in a battery model identification process is explored using different model structures and parameter-fitting algorithms. Pareto optimal sets are obtained, allowing a designer to select an appropriate compromise between accuracy and speed. In order to get a clearer understanding of the battery model identification problem, “identification surfaces” are presented. As an outcome of the battery identification surfaces, a new analytical solution is derived for battery model identification using a closed-form formula to obtain a battery’s ohmic resistance and open circuit voltage from measurement data. This analytical solution is used as a benchmark for comparison of other fitting algorithms and it is also used in its own right in a practical scenario for state-of-charge estimation. A simulation study is performed to demonstrate the effectiveness of the proposed framework and the simulation results are verified by conducting experimental tests on a small NiMH battery pack

    A novel mechanical analogy based battery model for SoC estimation using a multi-cell EKF

    Full text link
    The future evolution of technological systems dedicated to improve energy efficiency will strongly depend on effective and reliable Energy Storage Systems, as key components for Smart Grids, microgrids and electric mobility. Besides possible improvements in chemical materials and cells design, the Battery Management System is the most important electronic device that improves the reliability of a battery pack. In fact, a precise State of Charge (SoC) estimation allows the energy flows controller to exploit better the full capacity of each cell. In this paper, we propose an alternative definition for the SoC, explaining the rationales by a mechanical analogy. We introduce a novel cell model, conceived as a series of three electric dipoles, together with a procedure for parameters estimation relying only on voltage measures and a given current profile. The three dipoles represent the quasi-stationary, the dynamics and the istantaneous components of voltage measures. An Extended Kalman Filer (EKF) is adopted as a nonlinear state estimator. Moreover, we propose a multi-cell EKF system based on a round-robin approach to allow the same processing block to keep track of many cells at the same time. Performance tests with a prototype battery pack composed by 18 A123 cells connected in series show encouraging results.Comment: 8 page, 12 figures, 1 tabl

    Forecasting the state of health of electric vehicle batteries to evaluate the viability of car sharing practices

    Get PDF
    Car sharing practices are introducing electric vehicles into their fleet. However, literature suggests that at this point shared electric vehicle systems are failing to reach satisfactory commercial viability. Potential reason for this is the effect of higher vehicle usage which is characteristic for car sharing, and the implication on the battery state of health. In this paper, we forecast state of health for two identical electric vehicles shared by two different car sharing practices. For this purpose, we use real life transaction data from charging stations and different electric vehicles’ sensors. The results indicate that insight into users’ driving and charging behaviour can provide valuable point of reference for car sharing system designers. In particular, the forecasting results show that the moment when electric vehicle battery reaches its theoretical end of life can differ in as much as ÂŒ of time when vehicles are shared under different conditions
    • 

    corecore