305 research outputs found

    Selective Sampling for Example-based Word Sense Disambiguation

    Full text link
    This paper proposes an efficient example sampling method for example-based word sense disambiguation systems. To construct a database of practical size, a considerable overhead for manual sense disambiguation (overhead for supervision) is required. In addition, the time complexity of searching a large-sized database poses a considerable problem (overhead for search). To counter these problems, our method selectively samples a smaller-sized effective subset from a given example set for use in word sense disambiguation. Our method is characterized by the reliance on the notion of training utility: the degree to which each example is informative for future example sampling when used for the training of the system. The system progressively collects examples by selecting those with greatest utility. The paper reports the effectiveness of our method through experiments on about one thousand sentences. Compared to experiments with other example sampling methods, our method reduced both the overhead for supervision and the overhead for search, without the degeneration of the performance of the system.Comment: 25 pages, 14 Postscript figure

    The STEM-ECR Dataset: Grounding Scientific Entity References in STEM Scholarly Content to Authoritative Encyclopedic and Lexicographic Sources

    Get PDF
    We introduce the STEM (Science, Technology, Engineering, and Medicine) Dataset for Scientific Entity Extraction, Classification, and Resolution, version 1.0 (STEM-ECR v1.0). The STEM-ECR v1.0 dataset has been developed to provide a benchmark for the evaluation of scientific entity extraction, classification, and resolution tasks in a domain-independent fashion. It comprises abstracts in 10 STEM disciplines that were found to be the most prolific ones on a major publishing platform. We describe the creation of such a multidisciplinary corpus and highlight the obtained findings in terms of the following features: 1) a generic conceptual formalism for scientific entities in a multidisciplinary scientific context; 2) the feasibility of the domain-independent human annotation of scientific entities under such a generic formalism; 3) a performance benchmark obtainable for automatic extraction of multidisciplinary scientific entities using BERT-based neural models; 4) a delineated 3-step entity resolution procedure for human annotation of the scientific entities via encyclopedic entity linking and lexicographic word sense disambiguation; and 5) human evaluations of Babelfy returned encyclopedic links and lexicographic senses for our entities. Our findings cumulatively indicate that human annotation and automatic learning of multidisciplinary scientific concepts as well as their semantic disambiguation in a wide-ranging setting as STEM is reasonable.Comment: Published in LREC 2020. Publication URL https://www.aclweb.org/anthology/2020.lrec-1.268/; Dataset DOI https://doi.org/10.25835/001754

    A Crowdsourced Frame Disambiguation Corpus with Ambiguity

    Full text link
    We present a resource for the task of FrameNet semantic frame disambiguation of over 5,000 word-sentence pairs from the Wikipedia corpus. The annotations were collected using a novel crowdsourcing approach with multiple workers per sentence to capture inter-annotator disagreement. In contrast to the typical approach of attributing the best single frame to each word, we provide a list of frames with disagreement-based scores that express the confidence with which each frame applies to the word. This is based on the idea that inter-annotator disagreement is at least partly caused by ambiguity that is inherent to the text and frames. We have found many examples where the semantics of individual frames overlap sufficiently to make them acceptable alternatives for interpreting a sentence. We have argued that ignoring this ambiguity creates an overly arbitrary target for training and evaluating natural language processing systems - if humans cannot agree, why would we expect the correct answer from a machine to be any different? To process this data we also utilized an expanded lemma-set provided by the Framester system, which merges FN with WordNet to enhance coverage. Our dataset includes annotations of 1,000 sentence-word pairs whose lemmas are not part of FN. Finally we present metrics for evaluating frame disambiguation systems that account for ambiguity.Comment: Accepted to NAACL-HLT201

    Durham - a word sense disambiguation system

    Get PDF
    Ever since the 1950's when Machine Translation first began to be developed, word sense disambiguation (WSD) has been considered a problem to developers. In more recent times, all NLP tasks which are sensitive to lexical semantics potentially benefit from WSD although to what extent is largely unknown. The thesis presents a novel approach to the task of WSD on a large scale. In particular a novel knowledge source is presented named contextual information. This knowledge source adopts a sub-symbolic training mechanism to learn information from the context of a sentence which is able to aid disambiguation. The system also takes advantage of frequency information and these two knowledge sources are combined. The system is trained and tested on SEMCOR. A novel disambiguation algorithm is also developed. The algorithm must tackle the problem of a large possible number of sense combinations in a sentence. The algorithm presented aims to make an appropriate choice between accuracy and efficiency. This is performed by directing the search at a word level. The performance achieved on SEMCOR is reported and an analysis of the various components of the system is performed. The results achieved on this test data are pleasing, but are difficult to compare with most of the other work carried out in the field. For this reason the system took part in the SENSEVAL evaluation which provided an excellent opportunity to extensively compare WSD systems. SENSEVAL is a small scale WSD evaluation using the HECTOR lexicon. Despite this, few adaptations to the system were required. The performance of the system on the SENSEVAL task are reported and have also been presented in [Hawkins, 2000]

    When Is Word Sense Disambiguation Difficult? A Crowdsourcing Approach

    Get PDF
    We identified features that drive differential accuracy in word sense disambiguation (WSD) by building regression models using 10,000 coarse-grained WSD instances which were labeled on Mturk. Features predictive of accuracy include properties of the target word (word frequency, part of speech, and number of possible senses), the example context (length), and the Turker’s engagement with our task. The resulting model gives insight into which words are difficult to disambiguate. We also show that having many Turkers label the same instance provides at least a partial substitute for more expensive annotation

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail

    The STEM-ECR Dataset: Grounding Scientific Entity References in STEM Scholarly Content to Authoritative Encyclopedic and Lexicographic Sources

    Get PDF
    We introduce the STEM (Science, Technology, Engineering, and Medicine) Dataset for Scientific Entity Extraction, Classification, and Resolution, version 1.0 (STEM-ECR v1.0). The STEM-ECR v1.0 dataset has been developed to provide a benchmark for the evaluation of scientific entity extraction, classification, and resolution tasks in a domain-independent fashion. It comprises abstracts in 10 STEM disciplines that were found to be the most prolific ones on a major publishing platform. We describe the creation of such a multidisciplinary corpus and highlight the obtained findings in terms of the following features: 1) a generic conceptual formalism for scientific entities in a multidisciplinary scientific context; 2) the feasibility of the domain-independent human annotation of scientific entities under such a generic formalism; 3) a performance benchmark obtainable for automatic extraction of multidisciplinary scientific entities using BERT-based neural models; 4) a delineated 3-step entity resolution procedure for human annotation of the scientific entities via encyclopedic entity linking and lexicographic word sense disambiguation; and 5) human evaluations of Babelfy returned encyclopedic links and lexicographic senses for our entities. Our findings cumulatively indicate that human annotation and automatic learning of multidisciplinary scientific concepts as well as their semantic disambiguation in a wide-ranging setting as STEM is reasonable
    • …
    corecore