20,401 research outputs found

    Treebank-based acquisition of wide-coverage, probabilistic LFG resources: project overview, results and evaluation

    Get PDF
    This paper presents an overview of a project to acquire wide-coverage, probabilistic Lexical-Functional Grammar (LFG) resources from treebanks. Our approach is based on an automatic annotation algorithm that annotates “raw” treebank trees with LFG f-structure information approximating to basic predicate-argument/dependency structure. From the f-structure-annotated treebank we extract probabilistic unification grammar resources. We present the annotation algorithm, the extraction of lexical information and the acquisition of wide-coverage and robust PCFG-based LFG approximations including long-distance dependency resolution. We show how the methodology can be applied to multilingual, treebank-based unification grammar acquisition. Finally we show how simple (quasi-)logical forms can be derived automatically from the f-structures generated for the treebank trees

    Automatic case acquisition from texts for process-oriented case-based reasoning

    Get PDF
    This paper introduces a method for the automatic acquisition of a rich case representation from free text for process-oriented case-based reasoning. Case engineering is among the most complicated and costly tasks in implementing a case-based reasoning system. This is especially so for process-oriented case-based reasoning, where more expressive case representations are generally used and, in our opinion, actually required for satisfactory case adaptation. In this context, the ability to acquire cases automatically from procedural texts is a major step forward in order to reason on processes. We therefore detail a methodology that makes case acquisition from processes described as free text possible, with special attention given to assembly instruction texts. This methodology extends the techniques we used to extract actions from cooking recipes. We argue that techniques taken from natural language processing are required for this task, and that they give satisfactory results. An evaluation based on our implemented prototype extracting workflows from recipe texts is provided.Comment: Sous presse, publication pr\'evue en 201

    Ontologies and Information Extraction

    Full text link
    This report argues that, even in the simplest cases, IE is an ontology-driven process. It is not a mere text filtering method based on simple pattern matching and keywords, because the extracted pieces of texts are interpreted with respect to a predefined partial domain model. This report shows that depending on the nature and the depth of the interpretation to be done for extracting the information, more or less knowledge must be involved. This report is mainly illustrated in biology, a domain in which there are critical needs for content-based exploration of the scientific literature and which becomes a major application domain for IE

    Can Subcategorisation Probabilities Help a Statistical Parser?

    Full text link
    Research into the automatic acquisition of lexical information from corpora is starting to produce large-scale computational lexicons containing data on the relative frequencies of subcategorisation alternatives for individual verbal predicates. However, the empirical question of whether this type of frequency information can in practice improve the accuracy of a statistical parser has not yet been answered. In this paper we describe an experiment with a wide-coverage statistical grammar and parser for English and subcategorisation frequencies acquired from ten million words of text which shows that this information can significantly improve parse accuracy.Comment: 9 pages, uses colacl.st

    Automatic extraction of paraphrastic phrases from medium size corpora

    Full text link
    This paper presents a versatile system intended to acquire paraphrastic phrases from a representative corpus. In order to decrease the time spent on the elaboration of resources for NLP system (for example Information Extraction, IE hereafter), we suggest to use a machine learning system that helps defining new templates and associated resources. This knowledge is automatically derived from the text collection, in interaction with a large semantic network

    D6.2 Integrated Final Version of the Components for Lexical Acquisition

    Get PDF
    The PANACEA project has addressed one of the most critical bottlenecks that threaten the development of technologies to support multilingualism in Europe, and to process the huge quantity of multilingual data produced annually. Any attempt at automated language processing, particularly Machine Translation (MT), depends on the availability of language-specific resources. Such Language Resources (LR) contain information about the language\u27s lexicon, i.e. the words of the language and the characteristics of their use. In Natural Language Processing (NLP), LRs contribute information about the syntactic and semantic behaviour of words - i.e. their grammar and their meaning - which inform downstream applications such as MT. To date, many LRs have been generated by hand, requiring significant manual labour from linguistic experts. However, proceeding manually, it is impossible to supply LRs for every possible pair of European languages, textual domain, and genre, which are needed by MT developers. Moreover, an LR for a given language can never be considered complete nor final because of the characteristics of natural language, which continually undergoes changes, especially spurred on by the emergence of new knowledge domains and new technologies. PANACEA has addressed this challenge by building a factory of LRs that progressively automates the stages involved in the acquisition, production, updating and maintenance of LRs required by MT systems. The existence of such a factory will significantly cut down the cost, time and human effort required to build LRs. WP6 has addressed the lexical acquisition component of the LR factory, that is, the techniques for automated extraction of key lexical information from texts, and the automatic collation of lexical information into LRs in a standardized format. The goal of WP6 has been to take existing techniques capable of acquiring syntactic and semantic information from corpus data, improving upon them, adapting and applying them to multiple languages, and turning them into powerful and flexible techniques capable of supporting massive applications. One focus for improving the scalability and portability of lexical acquisition techniques has been to extend exiting techniques with more powerful, less "supervised" methods. In NLP, the amount of supervision refers to the amount of manual annotation which must be applied to a text corpus before machine learning or other techniques are applied to the data to compile a lexicon. More manual annotation means more accurate training data, and thus a more accurate LR. However, given that it is impractical from a cost and time perspective to manually annotate the vast amounts of data required for multilingual MT across domains, it is important to develop techniques which can learn from corpora with less supervision. Less supervised methods are capable of supporting both large-scale acquisition and efficient domain adaptation, even in the domains where data is scarce. Another focus of lexical acquisition in PANACEA has been the need of LR users to tune the accuracy level of LRs. Some applications may require increased precision, or accuracy, where the application requires a high degree of confidence in the lexical information used. At other times a greater level of coverage may be required, with information about more words at the expense of some degree of accuracy. Lexical acquisition in PANACEA has investigated confidence thresholds for lexical acquisition to ensure that the ultimate users of LRs can generate lexical data from the PANACEA factory at the desired level of accuracy
    corecore