17 research outputs found

    Obstructions to Faster Diameter Computation: Asteroidal Sets

    Get PDF
    Full version of an IPEC'22 paperAn extremity is a vertex such that the removal of its closed neighbourhood does not increase the number of connected components. Let ExtαExt_{\alpha} be the class of all connected graphs whose quotient graph obtained from modular decomposition contains no more than α\alpha pairwise nonadjacent extremities. Our main contributions are as follows. First, we prove that the diameter of every mm-edge graph in ExtαExt_{\alpha} can be computed in deterministic O(α3m3/2){\cal O}(\alpha^3 m^{3/2}) time. We then improve the runtime to linear for all graphs with bounded clique-number. Furthermore, we can compute an additive +1+1-approximation of all vertex eccentricities in deterministic O(α2m){\cal O}(\alpha^2 m) time. This is in sharp contrast with general mm-edge graphs for which, under the Strong Exponential Time Hypothesis (SETH), one cannot compute the diameter in O(m2ϵ){\cal O}(m^{2-\epsilon}) time for any ϵ>0\epsilon > 0. As important special cases of our main result, we derive an O(m3/2){\cal O}(m^{3/2})-time algorithm for exact diameter computation within dominating pair graphs of diameter at least six, and an O(k3m3/2){\cal O}(k^3m^{3/2})-time algorithm for this problem on graphs of asteroidal number at most kk. We end up presenting an improved algorithm for chordal graphs of bounded asteroidal number, and a partial extension of our results to the larger class of all graphs with a dominating target of bounded cardinality. Our time upper bounds in the paper are shown to be essentially optimal under plausible complexity assumptions

    Fast approximation of centrality and distances in hyperbolic graphs

    Full text link
    We show that the eccentricities (and thus the centrality indices) of all vertices of a δ\delta-hyperbolic graph G=(V,E)G=(V,E) can be computed in linear time with an additive one-sided error of at most cδc\delta, i.e., after a linear time preprocessing, for every vertex vv of GG one can compute in O(1)O(1) time an estimate e^(v)\hat{e}(v) of its eccentricity eccG(v)ecc_G(v) such that eccG(v)e^(v)eccG(v)+cδecc_G(v)\leq \hat{e}(v)\leq ecc_G(v)+ c\delta for a small constant cc. We prove that every δ\delta-hyperbolic graph GG has a shortest path tree, constructible in linear time, such that for every vertex vv of GG, eccG(v)eccT(v)eccG(v)+cδecc_G(v)\leq ecc_T(v)\leq ecc_G(v)+ c\delta. These results are based on an interesting monotonicity property of the eccentricity function of hyperbolic graphs: the closer a vertex is to the center of GG, the smaller its eccentricity is. We also show that the distance matrix of GG with an additive one-sided error of at most cδc'\delta can be computed in O(V2log2V)O(|V|^2\log^2|V|) time, where c<cc'< c is a small constant. Recent empirical studies show that many real-world graphs (including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others) have small hyperbolicity. So, we analyze the performance of our algorithms for approximating centrality and distance matrix on a number of real-world networks. Our experimental results show that the obtained estimates are even better than the theoretical bounds.Comment: arXiv admin note: text overlap with arXiv:1506.01799 by other author

    Index

    Get PDF

    Fully polynomial FPT algorithms for some classes of bounded clique-width graphs

    Get PDF
    Parameterized complexity theory has enabled a refined classification of the difficulty of NP-hard optimization problems on graphs with respect to key structural properties, and so to a better understanding of their true difficulties. More recently, hardness results for problems in P were achieved using reasonable complexity theoretic assumptions such as: Strong Exponential Time Hypothesis (SETH), 3SUM and All-Pairs Shortest-Paths (APSP). According to these assumptions, many graph theoretic problems do not admit truly subquadratic algorithms, nor even truly subcubic algorithms (Williams and Williams, FOCS 2010 and Abboud, Grandoni, Williams, SODA 2015). A central technique used to tackle the difficulty of the above mentioned problems is fixed-parameter algorithms for polynomial-time problems with polynomial dependency in the fixed parameter (P-FPT). This technique was introduced by Abboud, Williams and Wang in SODA 2016 and continued by Husfeldt (IPEC 2016) and Fomin et al. (SODA 2017), using the treewidth as a parameter. Applying this technique to clique-width, another important graph parameter, remained to be done. In this paper we study several graph theoretic problems for which hardness results exist such as cycle problems (triangle detection, triangle counting, girth, diameter), distance problems (diameter, eccentricities, Gromov hyperbolicity, betweenness centrality) and maximum matching. We provide hardness results and fully polynomial FPT algorithms, using clique-width and some of its upper-bounds as parameters (split-width, modular-width and P_4P\_4-sparseness). We believe that our most important result is an O(k4n+m){\cal O}(k^4 \cdot n + m)-time algorithm for computing a maximum matching where kk is either the modular-width or the P_4P\_4-sparseness. The latter generalizes many algorithms that have been introduced so far for specific subclasses such as cographs, P_4P\_4-lite graphs, P_4P\_4-extendible graphs and P_4P\_4-tidy graphs. Our algorithms are based on preprocessing methods using modular decomposition, split decomposition and primeval decomposition. Thus they can also be generalized to some graph classes with unbounded clique-width

    What Else Can Voronoi Diagrams Do for Diameter in Planar Graphs?

    Get PDF

    Algorithmes polynomiaux paramétrés pour des classes de graphes de largeur de clique bornée

    Get PDF
    Parameterized complexity theory has enabled a refined classification of the difficulty of NP-hard optimization problems on graphs with respect to key structural properties, and so to a better understanding of their true difficulties. More recently, hardness results for problems in P were achieved using reasonable complexity theoretic assumptions such as: Strong Exponential Time Hypothesis (SETH), 3SUM and All-Pairs Shortest-Paths (APSP). According to these assumptions, many graph theoretic problems do not admit truly subquadratic algorithms, nor even truly subcubic algorithms (Williams and Williams, FOCS 2010 and Abboud, Grandoni, Williams, SODA 2015). A central technique used to tackle the difficulty of the above mentioned problems is fixed-parameter algorithms for polynomial-time problems with polynomial dependency in the fixed parameter (P-FPT). This technique was introduced by Abboud, Williams and Wang in SODA 2016 and continued by Husfeldt (IPEC 2016) and Fomin et al. (SODA 2017), using the treewidth as a parameter. Applying this technique to clique-width, another important graph parameter, remained to be done. In this paper we study several graph theoretic problems for which hardness results exist such as cycle problems (triangle detection, triangle counting, girth, diameter), distance problems (diameter, eccentricities, Gromov hyperbolicity, betweenness centrality) and maximum matching. We provide hardness results and fully polynomial FPT algorithms, using clique-width and some of its upper-bounds as parameters (split-width, modular-width and P4P_4-sparseness). We believe that our most important result is an O(k4n+m){\cal O}(k^4 \cdot n + m)-time algorithm for computing a maximum matching where kk is either the modular-width or the P4P_4-sparseness. The latter generalizes many algorithms that have been introduced so far for specific subclasses such as cographs, P4P_4-lite graphs, P4P_4-extendible graphs and P4P_4-tidy graphs. Our algorithms are based on preprocessing methods using modular decomposition, split decomposition and primeval decomposition. Thus they can also be generalized to some graph classes with unbounded clique-width
    corecore