235 research outputs found

    Teaching Categories to Human Learners with Visual Explanations

    Get PDF
    We study the problem of computer-assisted teaching with explanations. Conventional approaches for machine teaching typically only provide feedback at the instance level e.g., the category or label of the instance. However, it is intuitive that clear explanations from a knowledgeable teacher can significantly improve a student's ability to learn a new concept. To address these existing limitations, we propose a teaching framework that provides interpretable explanations as feedback and models how the learner incorporates this additional information. In the case of images, we show that we can automatically generate explanations that highlight the parts of the image that are responsible for the class label. Experiments on human learners illustrate that, on average, participants achieve better test set performance on challenging categorization tasks when taught with our interpretable approach compared to existing methods

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Teaching categories to human learners with visual explanations

    Get PDF
    We study the problem of computer-assisted teaching with explanations. Conventional approaches for machine teaching typically only provide feedback at the instance level e.g., the category or label of the instance. However, it is intuitive that clear explanations from a knowledgeable teacher can significantly improve a student's ability to learn a new concept. To address these existing limitations, we propose a teaching framework that provides interpretable explanations as feedback and models how the learner incorporates this additional information. In the case of images, we show that we can automatically generate explanations that highlight the parts of the image that are responsible for the class label. Experiments on human learners illustrate that, on average, participants achieve better test set performance on challenging categorization tasks when taught with our interpretable approach compared to existing methods

    Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools

    Get PDF
    The vast amount of data produced by today's medical imaging systems has led medical professionals to turn to novel technologies in order to efficiently handle their data and exploit the rich information present in them. In this context, artificial intelligence (AI) is emerging as one of the most prominent solutions, promising to revolutionise every day clinical practice and medical research. The pillar supporting the development of reliable and robust AI algorithms is the appropriate preparation of the medical images to be used by the AI-driven solutions. Here, we provide a comprehensive guide for the necessary steps to prepare medical images prior to developing or applying AI algorithms. The main steps involved in a typical medical image preparation pipeline include: (i) image acquisition at clinical sites, (ii) image de-identification to remove personal information and protect patient privacy, (iii) data curation to control for image and associated information quality, (iv) image storage, and (v) image annotation. There exists a plethora of open access tools to perform each of the aforementioned tasks and are hereby reviewed. Furthermore, we detail medical image repositories covering different organs and diseases. Such repositories are constantly increasing and enriched with the advent of big data. Lastly, we offer directions for future work in this rapidly evolving field

    Human-AI Interaction in the Presence of Ambiguity: From Deliberation-based Labeling to Ambiguity-aware AI

    Get PDF
    Ambiguity, the quality of being open to more than one interpretation, permeates our lives. It comes in different forms including linguistic and visual ambiguity, arises for various reasons and gives rise to disagreements among human observers that can be hard or impossible to resolve. As artificial intelligence (AI) is increasingly infused into complex domains of human decision making it is crucial that the underlying AI mechanisms also support a notion of ambiguity. Yet, existing AI approaches typically assume that there is a single correct answer for any given input, lacking mechanisms to incorporate diverse human perspectives in various parts of the AI pipeline, including data labeling, model development and user interface design. This dissertation aims to shed light on the question of how humans and AI can be effective partners in the presence of ambiguous problems. To address this question, we begin by studying group deliberation as a tool to detect and analyze ambiguous cases in data labeling. We present three case studies that investigate group deliberation in the context of different labeling tasks, data modalities and types of human labeling expertise. First, we present CrowdDeliberation, an online platform for synchronous group deliberation in novice crowd work, and show how worker deliberation affects resolvability and accuracy in text classification tasks of varying subjectivity. We then translate our findings to the expert domain of medical image classification to demonstrate how imposing additional structure on deliberation arguments can improve the efficiency of the deliberation process without compromising its reliability. Finally, we present CrowdEEG, an online platform for collaborative annotation and deliberation of medical time series data, implementing an asynchronous and highly structured deliberation process. Our findings from an observational study with 36 sleep health professionals help explain how disagreements arise and when they can be resolved through group deliberation. Beyond investigating group deliberation within data labeling, we also demonstrate how the resulting deliberation data can be used to support both human and artificial intelligence. To this end, we first present results from a controlled experiment with ten medical generalists, suggesting that reading deliberation data from medical specialists significantly improves generalists' comprehension and diagnostic accuracy on difficult patient cases. Second, we leverage deliberation data to simulate and investigate AI assistants that not only highlight ambiguous cases, but also explain the underlying sources of ambiguity to end users in human-interpretable terms. We provide evidence suggesting that this form of ambiguity-aware AI can help end users to triage and trust AI-provided data classifications. We conclude by outlining the main contributions of this dissertation and directions for future research

    Semi-Weakly Supervised Learning for Label-efficient Semantic Segmentation in Expert-driven Domains

    Get PDF
    Unter Zuhilfenahme von Deep Learning haben semantische Segmentierungssysteme beeindruckende Ergebnisse erzielt, allerdings auf der Grundlage von überwachtem Lernen, das durch die Verfügbarkeit kostspieliger, pixelweise annotierter Bilder limitiert ist. Bei der Untersuchung der Performance dieser Segmentierungssysteme in Kontexten, in denen kaum Annotationen vorhanden sind, bleiben sie hinter den hohen Erwartungen, die durch die Performance in annotationsreichen Szenarien geschürt werden, zurück. Dieses Dilemma wiegt besonders schwer, wenn die Annotationen von lange geschultem Personal, z.B. Medizinern, Prozessexperten oder Wissenschaftlern, erstellt werden müssen. Um gut funktionierende Segmentierungsmodelle in diese annotationsarmen, Experten-angetriebenen Domänen zu bringen, sind neue Lösungen nötig. Zu diesem Zweck untersuchen wir zunächst, wie schlecht aktuelle Segmentierungsmodelle mit extrem annotationsarmen Szenarien in Experten-angetriebenen Bildgebungsdomänen zurechtkommen. Daran schließt sich direkt die Frage an, ob die kostspielige pixelweise Annotation, mit der Segmentierungsmodelle in der Regel trainiert werden, gänzlich umgangen werden kann, oder ob sie umgekehrt ein Kosten-effektiver Anstoß sein kann, um die Segmentierung in Gang zu bringen, wenn sie sparsam eingestetzt wird. Danach gehen wir auf die Frage ein, ob verschiedene Arten von Annotationen, schwache- und pixelweise Annotationen mit unterschiedlich hohen Kosten, gemeinsam genutzt werden können, um den Annotationsprozess flexibler zu gestalten. Experten-angetriebene Domänen haben oft nicht nur einen Annotationsmangel, sondern auch völlig andere Bildeigenschaften, beispielsweise volumetrische Bild-Daten. Der Übergang von der 2D- zur 3D-semantischen Segmentierung führt zu voxelweisen Annotationsprozessen, was den nötigen Zeitaufwand für die Annotierung mit der zusätzlichen Dimension multipliziert. Um zu einer handlicheren Annotation zu gelangen, untersuchen wir Trainingsstrategien für Segmentierungsmodelle, die nur preiswertere, partielle Annotationen oder rohe, nicht annotierte Volumina benötigen. Dieser Wechsel in der Art der Überwachung im Training macht die Anwendung der Volumensegmentierung in Experten-angetriebenen Domänen realistischer, da die Annotationskosten drastisch gesenkt werden und die Annotatoren von Volumina-Annotationen befreit werden, welche naturgemäß auch eine Menge visuell redundanter Regionen enthalten würden. Schließlich stellen wir die Frage, ob es möglich ist, die Annotations-Experten von der strikten Anforderung zu befreien, einen einzigen, spezifischen Annotationstyp liefern zu müssen, und eine Trainingsstrategie zu entwickeln, die mit einer breiten Vielfalt semantischer Information funktioniert. Eine solche Methode wurde hierzu entwickelt und in unserer umfangreichen experimentellen Evaluierung kommen interessante Eigenschaften verschiedener Annotationstypen-Mixe in Bezug auf deren Segmentierungsperformance ans Licht. Unsere Untersuchungen führten zu neuen Forschungsrichtungen in der semi-weakly überwachten Segmentierung, zu neuartigen, annotationseffizienteren Methoden und Trainingsstrategien sowie zu experimentellen Erkenntnissen, zur Verbesserung von Annotationsprozessen, indem diese annotationseffizient, expertenzentriert und flexibel gestaltet werden

    Iterative multi-path tracking for video and volume segmentation with sparse point supervision

    Get PDF
    Recent machine learning strategies for segmentation tasks have shown great ability when trained on large pixel-wise annotated image datasets. It remains a major challenge however to aggregate such datasets, as the time and monetary cost associated with collecting extensive annotations is extremely high. This is particularly the case for generating precise pixel-wise annotations in video and volumetric image data. To this end, this work presents a novel framework to produce pixel-wise segmentations using minimal supervision. Our method relies on 2D point supervision, whereby a single 2D location within an object of interest is provided on each image of the data. Our method then estimates the object appearance in a semi-supervised fashion by learning object-image-specific features and by using these in a semi-supervised learning framework. Our object model is then used in a graph-based optimization problem that takes into account all provided locations and the image data in order to infer the complete pixel-wise segmentation. In practice, we solve this optimally as a tracking problem using a K-shortest path approach. Both the object model and segmentation are then refined iteratively to further improve the final segmentation. We show that by collecting 2D locations using a gaze tracker, our approach can provide state-of-the-art segmentations on a range of objects and image modalities (video and 3D volumes), and that these can then be used to train supervised machine learning classifiers
    corecore