3,379 research outputs found

    Extending the Real-Time Maude Semantics of Ptolemy to Hierarchical DE Models

    Full text link
    This paper extends our Real-Time Maude formalization of the semantics of flat Ptolemy II discrete-event (DE) models to hierarchical models, including modal models. This is a challenging task that requires combining synchronous fixed-point computations with hierarchical structure. The synthesis of a Real-Time Maude verification model from a Ptolemy II DE model, and the formal verification of the synthesized model in Real-Time Maude, have been integrated into Ptolemy II, enabling a model-engineering process that combines the convenience of Ptolemy II DE modeling and simulation with formal verification in Real-Time Maude.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Compilation of Heterogeneous Models: Motivations and Challenges

    Get PDF
    International audienceThe widespread use of model driven engineering in the development of software-intensive systems, including high-integrity embedded systems, gave rise to a "Tower of Babel" of modeling languages. System architects may use languages such as OMG SysML and MARTE, SAE AADL or EAST-ADL; control and command engineers tend to use graphical tools such as MathWorks Simulink/Stateflow or Esterel Technologies SCADE, or textual languages such as MathWorks Embedded Matlab; software engineers usually rely on OMG UML; and, of course, many in-house domain specific languages are equally used at any step of the development process. This heterogeneity of modeling formalisms raises several questions on the verification and code generation for systems described using heterogeneous models: How can we ensure consistency across multiple modeling views? How can we generate code, which is optimized with respect to multiple modeling views? How can we ensure model-level verification is consistent with the run-time behavior of the generated executable application?In this position paper we describe the motivations and challenges of analysis and code generation from heterogeneous models when intra-view consistency, optimization and safety are major concerns. We will then introduce Project P 2 and Hi-MoCo 3-respectively FUI and Eurostars-funded collaborative projects tackling the challenges above. This work continues and extends, in a wider context, the work carried out by the Gene-Auto 4 project [1], [2]. Hereby we will present the key elements of Project P and Hi-MoCo, in particular: (i) the philosophy for the identification of safe and minimal practical subsets of input modeling languages; (ii) the overall architecture of the toolsets, the supported analysis techniques and the target languages for code generation; and finally, (iii) the approach to cross-domain qualification for an open-source, community-driven toolset

    Power efficient dataflow design for a heterogeneous smart camera architecture

    Get PDF
    Visual attention modelling characterises the scene to segment regions of visual interest and is increasingly being used as a pre-processing step in many computer vision applications including surveillance and security. Smart camera architectures are an emerging technology and a foundation of security and safety frameworks in modern vision systems. In this paper, we present a dataflow design of a visual saliency based camera architecture targeting a heterogeneous CPU+FPGA platform to propose a smart camera network infrastructure. The proposed design flow encompasses image processing algorithm implementation, hardware & software integration and network connectivity through a unified model. By leveraging the properties of the dataflow paradigm, we iteratively refine the algorithm specification into a deployable solution, addressing distinct requirements at each design stage: from algorithm accuracy to hardware-software interactions, real-time execution and power consumption. Our design achieved real-time run time performance and the power consumption of the optimised asynchronous design is reported at only 0.25 Watt. The resource usages on a Xilinx Zynq platform remains significantly low

    Software engineering and middleware: a roadmap (Invited talk)

    Get PDF
    The construction of a large class of distributed systems can be simplified by leveraging middleware, which is layered between network operating systems and application components. Middleware resolves heterogeneity and facilitates communication and coordination of distributed components. Existing middleware products enable software engineers to build systems that are distributed across a local-area network. State-of-the-art middleware research aims to push this boundary towards Internet-scale distribution, adaptive and reconfigurable middleware and middleware for dependable and wireless systems. The challenge for software engineering research is to devise notations, techniques, methods and tools for distributed system construction that systematically build and exploit the capabilities that middleware deliver
    corecore