195 research outputs found

    Transferring Generalized Knowledge from Physics-based Simulation to Clinical Domain

    Get PDF
    A primary factor for the success of machine learning is the quality of labeled training data. However, in many fields, labeled data can be costly, difficult, or even impossible to acquire. In comparison, computer simulation data can now be generated at a much higher abundance with a much lower cost. These simulation data could potentially solve the problem of data deficiency in many machine learning tasks. Nevertheless, due to model assumptions, simplifications and possible errors, there is always a discrepancy between simulated and real data. This discrepancy needs to be addressed when transferring the knowledge from simulation to real data. Furthermore, simulation data is always tied to specific settings of models parameters, many of which have a considerable range of variations yet not necessarily relevant to the machine learning task of interest. The knowledge extracted from simulation data must thus be generalizable across these parameter variations before being transferred. In this dissertation, we address the two outlined challenges in leveraging simulation data to overcome the shortage of labeled real data, . We do so in a clinical task of localizing the origin of ventricular activation from 12 lead electrocardiograms (ECGs), where the clinical ECG data with labeled sites of origin in the heart can only be invasively available. By adopting the concept of domain adaptation, we address the discrepancy between simulated and clinical ECG data by learning the shift between the two domains using a large amount of simulation data and a small amount of clinical data. By adopting the concept of domain generalization, we then address the reliance of simulated ECG data on patient-specific geometrical models by learning to generalize simulated ECG data across subjects, before transferring them to clinical data. Evaluated on in-vivo premature ventricular contraction (PVC) patients, we demonstrate the feasibility of utilizing a large number of offline simulated ECG datasets to enable the prediction of the origin of arrhythmia with only a small number of clinical ECG data on a new patient

    The Application of Computer Techniques to ECG Interpretation

    Get PDF
    This book presents some of the latest available information on automated ECG analysis written by many of the leading researchers in the field. It contains a historical introduction, an outline of the latest international standards for signal processing and communications and then an exciting variety of studies on electrophysiological modelling, ECG Imaging, artificial intelligence applied to resting and ambulatory ECGs, body surface mapping, big data in ECG based prediction, enhanced reliability of patient monitoring, and atrial abnormalities on the ECG. It provides an extremely valuable contribution to the field

    On Learning and Generalization to Solve Inverse Problem of Electrophysiological Imaging

    Get PDF
    In this dissertation, we are interested in solving a linear inverse problem: inverse electrophysiological (EP) imaging, where our objective is to computationally reconstruct personalized cardiac electrical signals based on body surface electrocardiogram (ECG) signals. EP imaging has shown promise in the diagnosis and treatment planning of cardiac dysfunctions such as atrial flutter, atrial fibrillation, ischemia, infarction and ventricular arrhythmia. Towards this goal, we frame it as a problem of learning a function from the domain of measurements to signals. Depending upon the assumptions, we present two classes of solutions: 1) Bayesian inference in a probabilistic graphical model, 2) Learning from samples using deep networks. In both of these approaches, we emphasize on learning the inverse function with good generalization ability, which becomes a main theme of the dissertation. In a Bayesian framework, we argue that this translates to appropriately integrating different sources of knowledge into a common probabilistic graphical model framework and using it for patient specific signal estimation through Bayesian inference. In learning from samples setting, this translates to designing a deep network with good generalization ability, where good generalization refers to the ability to reconstruct inverse EP signals in a distribution of interest (which could very well be outside the sample distribution used during training). By drawing ideas from different areas like functional analysis (e.g. Fenchel duality), variational inference (e.g. Variational Bayes) and deep generative modeling (e.g. variational autoencoder), we show how we can incorporate different prior knowledge in a principled manner in a probabilistic graphical model framework to obtain a good inverse solution with generalization ability. Similarly, to improve generalization of deep networks learning from samples, we use ideas from information theory (e.g. information bottleneck), learning theory (e.g. analytical learning theory), adversarial training, complexity theory and functional analysis (e.g. RKHS). We test our algorithms on synthetic data and real data of the patients who had undergone through catheter ablation in clinics and show that our approach yields significant improvement over existing methods. Towards the end of the dissertation, we investigate general questions on generalization and stabilization of adversarial training of deep networks and try to understand the role of smoothness and function space complexity in answering those questions. We conclude by identifying limitations of the proposed methods, areas of further improvement and open questions that are specific to inverse electrophysiological imaging as well as broader, encompassing theory of learning and generalization

    Modelling the interaction between induced pluripotent stem cells derived cardiomyocytes patches and the recipient hearts

    Get PDF
    Cardiovascular diseases are the main cause of death worldwide. The single biggest killer is represented by ischemic heart disease. Myocardial infarction causes the formation of non-conductive and non-contractile, scar-like tissue in the heart, which can hamper the heart's physiological function and cause pathologies ranging from arrhythmias to heart failure. The heart can not recover the tissue lost due to myocardial infarction due to the myocardium's limited ability to regenerate. The only available treatment is heart transpalant, which is limited by the number of donors and can elicit an adverse response from the recipients immune system. Recently, regenerative medicine has been proposed as an alternative approach to help post-myocardial infarction hearts recover their functionality. Among the various techniques, the application of cardiac patches of engineered heart tissue in combination with electroactive materials constitutes a promising technology. However, many challenges need to be faced in the development of this treatment. One of the main concerns is represented by the immature phenotype of the stem cells-derived cardiomyocytes used to fabricate the engineered heart tissue. Their electrophysiological differences with respect to the host myocardium may contribute to an increased arrhythmia risk. A large number of animal experiments are needed to optimize the patches' characteristics and to better understand the implications of the electrical interaction between patches and host myocardium. In this Thesis we leveraged cardiac computational modelling to simulate \emph{in silico} electrical propagation in scarred heart tissue in the presence of a patch of engineered heart tissue and conductive polymer engrafted at the epicardium. This work is composed by two studies. In the first study we designed a tissue model with simplified geometry and used machine learning and global sensitivity analysis techniques to identify engineered heart tissue patch design variables that are important for restoring physiological electrophysiology in the host myocardium. Additionally, we showed how engineered heart tissue properties could be tuned to restore physiological activation while reducing arrhythmic risk. In the second study we moved to more realistic geometries and we devised a way to manipulate ventricle meshes obtained from magnetic resonance images to apply \emph{in silico} engineered heart tissue epicardial patches. We then investigated how patches with different conduction velocity and action potential duration influence the host ventricle electrophysiology. Specifically, we showed that appropriately located patches can reduce the predisposition to anatomical isthmus mediated re-entry and that patches with a physiological action potential duration and higher conduction velocity were most effective in reducing this risk. We also demonstrated that patches with conduction velocity and action potential duration typical of immature stem cells-derived cardiomyocytes were associated with the onset of sustained functional re-entry in an ischemic cardiomyopathy model with a large transmural scar. Finally, we demonstrated that patches electrically coupled to host myocardium reduce the likelihood of propagation of focal ectopic impulses. This Thesis demonstrates how computational modelling can be successfully applied to the field of regenerative medicine and constitutes the first step towards the creation of patient-specific models for developing and testing patches for cardiac regeneration.Open Acces

    Improved 3D MR Image Acquisition and Processing in Congenital Heart Disease

    Get PDF
    Congenital heart disease (CHD) is the most common type of birth defect, affecting about 1% of the population. MRI is an essential tool in the assessment of CHD, including diagnosis, intervention planning and follow-up. Three-dimensional MRI can provide particularly rich visualization and information. However, it is often complicated by long scan times, cardiorespiratory motion, injection of contrast agents, and complex and time-consuming postprocessing. This thesis comprises four pieces of work that attempt to respond to some of these challenges. The first piece of work aims to enable fast acquisition of 3D time-resolved cardiac imaging during free breathing. Rapid imaging was achieved using an efficient spiral sequence and a sparse parallel imaging reconstruction. The feasibility of this approach was demonstrated on a population of 10 patients with CHD, and areas of improvement were identified. The second piece of work is an integrated software tool designed to simplify and accelerate the development of machine learning (ML) applications in MRI research. It also exploits the strengths of recently developed ML libraries for efficient MR image reconstruction and processing. The third piece of work aims to reduce contrast dose in contrast-enhanced MR angiography (MRA). This would reduce risks and costs associated with contrast agents. A deep learning-based contrast enhancement technique was developed and shown to improve image quality in real low-dose MRA in a population of 40 children and adults with CHD. The fourth and final piece of work aims to simplify the creation of computational models for hemodynamic assessment of the great arteries. A deep learning technique for 3D segmentation of the aorta and the pulmonary arteries was developed and shown to enable accurate calculation of clinically relevant biomarkers in a population of 10 patients with CHD

    2006 Eighteenth Annual IMSA Presentation Day

    Get PDF
    We believe that our goal of creating decidedly-different learners is already being met and will make a profound impact on the future of humanity.https://digitalcommons.imsa.edu/archives_sir/1020/thumbnail.jp

    POTENTIAL MECHANISMS OF HIPPOCAMPAL RESILIENCE TO ALZHEIMER’S DISEASE PATHOLOGY

    Get PDF
    Alzheimer’s disease (AD) is an age-related, progressive neurodegenerative proteinopathy with few treatments and no cure. Accumulation of beta amyloid and tau proteins are associated with disease symptoms including cognitive dysfunction and impaired spatial learning and memory. New therapeutic strategies are vital to address disease etiology and symptoms, but recent clinical failures have underscored the importance of mechanistic studies that search for new resilience factors in the context of disease progression. We define two possible mechanisms of neural resilience to AD symptoms and pathophysiology in the hippocampus, a nexus of spatial learning and memory and a critical site of synergy for amyloid and tau pathophysiology. These studies describe the interaction of two critical inhibitory neuron populations in the process of spatial learning and memory and detect early signs of dysfunction in a mouse model of AD. This work also identifies novel inhibitory circuit remodeling associated with stabilization of hippocampal activity alterations and indicates that inhibitory circuit fiber outgrowth in the hippocampus confers resilience to AD pathophysiology. Our results also establish disease relevance for an understudied innate waste clearance of the brain in both human AD patients and mouse models. This reserve waste clearance system relies on astrocytes to encase deleterious proteins and cellular organelles in dense, carbohydrate-rich structures termed corpora amylacea and periodic acid-Schiff granules in humans and mice, respectively. Our results indicate that tau can localize to these waste containers in the human and mouse hippocampus and that their generation is associated with increased astrocytic reactivity. We further describe the bimodal trajectory of hippocampal CA density in relation to advancing tau pathology (Braak 06) stage in AD patients and decreased hippocampal CA density in demented patients when compared to cognitively normal controls. Furthermore, we established relationships with CA density and advancing biological age, amyloid score, and APOE allele variant at select AD progression stages. These results indicate that loss of CA as a reserve waste clearance system is associated with poor cognitive outcomes and advanced Braak stage in a cohort of human AD patients. Overall, our studies highlight two possible resilience mechanisms for future targeted therapies in AD.Doctor of Philosoph

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Statistical and Graph-Based Signal Processing: Fundamental Results and Application to Cardiac Electrophysiology

    Get PDF
    The goal of cardiac electrophysiology is to obtain information about the mechanism, function, and performance of the electrical activities of the heart, the identification of deviation from normal pattern and the design of treatments. Offering a better insight into cardiac arrhythmias comprehension and management, signal processing can help the physician to enhance the treatment strategies, in particular in case of atrial fibrillation (AF), a very common atrial arrhythmia which is associated to significant morbidities, such as increased risk of mortality, heart failure, and thromboembolic events. Catheter ablation of AF is a therapeutic technique which uses radiofrequency energy to destroy atrial tissue involved in the arrhythmia sustenance, typically aiming at the electrical disconnection of the of the pulmonary veins triggers. However, recurrence rate is still very high, showing that the very complex and heterogeneous nature of AF still represents a challenging problem. Leveraging the tools of non-stationary and statistical signal processing, the first part of our work has a twofold focus: firstly, we compare the performance of two different ablation technologies, based on contact force sensing or remote magnetic controlled, using signal-based criteria as surrogates for lesion assessment. Furthermore, we investigate the role of ablation parameters in lesion formation using the late-gadolinium enhanced magnetic resonance imaging. Secondly, we hypothesized that in human atria the frequency content of the bipolar signal is directly related to the local conduction velocity (CV), a key parameter characterizing the substrate abnormality and influencing atrial arrhythmias. Comparing the degree of spectral compression among signals recorded at different points of the endocardial surface in response to decreasing pacing rate, our experimental data demonstrate a significant correlation between CV and the corresponding spectral centroids. However, complex spatio-temporal propagation pattern characterizing AF spurred the need for new signals acquisition and processing methods. Multi-electrode catheters allow whole-chamber panoramic mapping of electrical activity but produce an amount of data which need to be preprocessed and analyzed to provide clinically relevant support to the physician. Graph signal processing has shown its potential on a variety of applications involving high-dimensional data on irregular domains and complex network. Nevertheless, though state-of-the-art graph-based methods have been successful for many tasks, so far they predominantly ignore the time-dimension of data. To address this shortcoming, in the second part of this dissertation, we put forth a Time-Vertex Signal Processing Framework, as a particular case of the multi-dimensional graph signal processing. Linking together the time-domain signal processing techniques with the tools of GSP, the Time-Vertex Signal Processing facilitates the analysis of graph structured data which also evolve in time. We motivate our framework leveraging the notion of partial differential equations on graphs. We introduce joint operators, such as time-vertex localization and we present a novel approach to significantly improve the accuracy of fast joint filtering. We also illustrate how to build time-vertex dictionaries, providing conditions for efficient invertibility and examples of constructions. The experimental results on a variety of datasets suggest that the proposed tools can bring significant benefits in various signal processing and learning tasks involving time-series on graphs. We close the gap between the two parts illustrating the application of graph and time-vertex signal processing to the challenging case of multi-channels intracardiac signals

    Hemodynamic Quantifications By Contrast-Enhanced Ultrasound:From In-Vitro Modelling To Clinical Validation

    Get PDF
    • …
    corecore