12 research outputs found

    From serendipity to sustainable Green IoT: technical, industrial and political perspective

    Get PDF
    Recently, Internet of Things (IoT) has become one of the largest electronics market for hardware production due to its fast evolving application space. However, one of the key challenges for IoT hardware is the energy efficiency as most of IoT devices/objects are expected to run on batteries for months/years without a battery replacement or on harvested energy sources. Widespread use of IoT has also led to a largescale rise in the carbon footprint. In this regard, academia, industry and policy-makers are constantly working towards new energy-efficient hardware and software solutions paving the way for an emerging area referred to as green-IoT. With the direct integration and the evolution of smart communication between physical world and computer-based systems, IoT devices are also expected to reduce the total amount of energy consumption for the Information and Communication Technologies (ICT) sector. However, in order to increase its chance of success and to help at reducing the overall energy consumption and carbon emissions a comprehensive investigation into how to achieve green-IoT is required. In this context, this paper surveys the green perspective of the IoT paradigm and aims to contribute at establishing a global approach for green-IoT environments. A comprehensive approach is presented that focuses not only on the specific solutions but also on the interaction among them, and highlights the precautions/decisions the policy makers need to take. On one side, the ongoing European projects and standardization efforts as well as industry and academia based solutions are presented and on the other side, the challenges, open issues, lessons learned and the role of policymakers towards green-IoT are discussed. The survey shows that due to many existing open issues (e.g., technical considerations, lack of standardization, security and privacy, governance and legislation, etc.) that still need to be addressed, a realistic implementation of a sustainable green-IoT environment that could be universally accepted and deployed, is still missing

    Contributions to the development of active RFID systems at the 433 MHz band

    Get PDF
    Donat el potencial de la tecnologia RFID activa, aquesta tesi contribueix al seu desenvolupament centrant-se en les capes més baixes de la pila de protocols, és a dir, la capa física i la capa d'enllaç de dades. Aquestes capes determinen l'abast de la comunicació entre l'interrogador i les etiquetes, el nombre d'etiquetes que un interrogador pot llegir per segon i el consum d'energia que utilitzen les etiquetes en el procés, que en són els paràmetres de rendiment clau. A la capa física la tesi avalua els aspectes de propagació de la banda 433 MHz en diferents entorns i els compara amb la banda 2.4 GHz. Els resultats demostren que, per a la mateixa potència de transmissió, els sistemes RFID actius que funcionen a la banda 433 MHz aconsegueixen un millor abast de comunicació gràcies a unes millors característiques de propagació. A la capa d'enllaç de dades la tesi proposa LPDQ (Low-Power Distributed Queuing), un nou protocol d'accés al medi, i el compara amb FSA (Frame Slotted ALOHA). LPDQ combina LPL (Low-Power Listening) per a la sincronització de xarxa i DQ (Distributed Queuing) per a la transmissió de dades. En comparació amb el cas òptim de FSA, LPDQ aconsegueix un rendiment proper al màxim teòric (99.5%) independentment del nombre d'etiquetes i redueix el consum d'energia de les etiquetes en més d'un 10%.Dado el potencial de la tecnología RFID activa, esta tesis contribuye a su desarrollo centrándose en las capas más bajas de la pila de protocolos, es decir, la capa física y la capa de enlace de datos. Estas capas determinan el alcance de la comunicación entre el interrogador y las etiquetas, el número de etiquetas que un interrogador puede leer por segundo y el consumo de energía que utilizan las etiquetas en el proceso, que son los parámetros de rendimiento clave. En la capa física la tesis evalúa los aspectos de propagación de la banda 433 MHz en diferentes entornos y los compara con la banda 2.4 GHz. Los resultados demuestran que, para la misma potencia de transmisión, los sistemas RFID activos que funcionan en la banda 433 MHz consiguen un mejor alcance de comunicación gracias a unas mejores características de propagación. En la capa de enlace de datos la tesis propone LPDQ (Low-Power Distributed Queuing), un nuevo protocolo de acceso al medio, y lo compara con FSA (Frame Slotted ALOHA). LPDQ combina LPL (Low-Power Listening) para la sincronización de red y DQ (Distributed Queuing) para la transmisión de datos. En comparación con el caso óptimo de FSA, LPDQ consigue un rendimiento cercano al máximo teórico (99.5%) independientemente del número de etiquetas y reduce el consumo de energía de las etiquetas en más de un 10%.Given the potential of active RFID technology, this thesis contributes to its development by focusing on the lowest layers of the stack, that is, the physical and data-link layers. These layers determine the tag communication range, packet throughput and energy consumption, which are key performance parameters. At the physical layer, the thesis studies propagation aspects of the 433 MHz band in different environments and compares it to the 2.4 GHz band, which is also used in active RFID systems. The results demonstrate that active RFID systems operating at the 433 MHz band can achieve a better communication range at the same transmit power due to better propagation characteristics. At the data-link layer, the thesis proposes LPDQ (Low-Power Distributed Queuing), a new MAC (media access control) protocol, and compares it to FSA (Frame Slotted ALOHA). LPDQ combines LPL (Low-Power Listening) for network synchronization and DQ (Distributed Queuing) for data transmission. Compared to the optimal FSA case, LPDQ can achieve a performance close to the theoretical maximum (99.5%), regardless of the number of tags, and reduces tag energy consumption by more than 10%

    Security protocols suite for machine-to-machine systems

    Get PDF
    Nowadays, the great diffusion of advanced devices, such as smart-phones, has shown that there is a growing trend to rely on new technologies to generate and/or support progress; the society is clearly ready to trust on next-generation communication systems to face today’s concerns on economic and social fields. The reason for this sociological change is represented by the fact that the technologies have been open to all users, even if the latter do not necessarily have a specific knowledge in this field, and therefore the introduction of new user-friendly applications has now appeared as a business opportunity and a key factor to increase the general cohesion among all citizens. Within the actors of this technological evolution, wireless machine-to-machine (M2M) networks are becoming of great importance. These wireless networks are made up of interconnected low-power devices that are able to provide a great variety of services with little or even no user intervention. Examples of these services can be fleet management, fire detection, utilities consumption (water and energy distribution, etc.) or patients monitoring. However, since any arising technology goes together with its security threats, which have to be faced, further studies are necessary to secure wireless M2M technology. In this context, main threats are those related to attacks to the services availability and to the privacy of both the subscribers’ and the services providers’ data. Taking into account the often limited resources of the M2M devices at the hardware level, ensuring the availability and privacy requirements in the range of M2M applications while minimizing the waste of valuable resources is even more challenging. Based on the above facts, this Ph. D. thesis is aimed at providing efficient security solutions for wireless M2M networks that effectively reduce energy consumption of the network while not affecting the overall security services of the system. With this goal, we first propose a coherent taxonomy of M2M network that allows us to identify which security topics deserve special attention and which entities or specific services are particularly threatened. Second, we define an efficient, secure-data aggregation scheme that is able to increase the network lifetime by optimizing the energy consumption of the devices. Third, we propose a novel physical authenticator or frame checker that minimizes the communication costs in wireless channels and that successfully faces exhaustion attacks. Fourth, we study specific aspects of typical key management schemes to provide a novel protocol which ensures the distribution of secret keys for all the cryptographic methods used in this system. Fifth, we describe the collaboration with the WAVE2M community in order to define a proper frame format actually able to support the necessary security services, including the ones that we have already proposed; WAVE2M was funded to promote the global use of an emerging wireless communication technology for ultra-low and long-range services. And finally sixth, we provide with an accurate analysis of privacy solutions that actually fit M2M-networks services’ requirements. All the analyses along this thesis are corroborated by simulations that confirm significant improvements in terms of efficiency while supporting the necessary security requirements for M2M networks

    Security techniques for sensor systems and the Internet of Things

    Get PDF
    Sensor systems are becoming pervasive in many domains, and are recently being generalized by the Internet of Things (IoT). This wide deployment, however, presents significant security issues. We develop security techniques for sensor systems and IoT, addressing all security management phases. Prior to deployment, the nodes need to be hardened. We develop nesCheck, a novel approach that combines static analysis and dynamic checking to efficiently enforce memory safety on TinyOS applications. As security guarantees come at a cost, determining which resources to protect becomes important. Our solution, OptAll, leverages game-theoretic techniques to determine the optimal allocation of security resources in IoT networks, taking into account fixed and variable costs, criticality of different portions of the network, and risk metrics related to a specified security goal. Monitoring IoT devices and sensors during operation is necessary to detect incidents. We design Kalis, a knowledge-driven intrusion detection technique for IoT that does not target a single protocol or application, and adapts the detection strategy to the network features. As the scale of IoT makes the devices good targets for botnets, we design Heimdall, a whitelist-based anomaly detection technique for detecting and protecting against IoT-based denial of service attacks. Once our monitoring tools detect an attack, determining its actual cause is crucial to an effective reaction. We design a fine-grained analysis tool for sensor networks that leverages resident packet parameters to determine whether a packet loss attack is node- or link-related and, in the second case, locate the attack source. Moreover, we design a statistical model for determining optimal system thresholds by exploiting packet parameters variances. With our techniques\u27 diagnosis information, we develop Kinesis, a security incident response system for sensor networks designed to recover from attacks without significant interruption, dynamically selecting response actions while being lightweight in communication and energy overhead

    Tecnologias IoT para pastoreio e controlo de postura animal

    Get PDF
    The unwanted and adverse weeds that are constantly growing in vineyards, force wine producers to repeatedly remove them through the use of mechanical and chemical methods. These methods include machinery such as plows and brushcutters, and chemicals as herbicides to remove and prevent the growth of weeds both in the inter-row and under-vine areas. Nonetheless, such methods are considered very aggressive for vines, and, in the second case, harmful for the public health, since chemicals may remain in the environment and hence contaminate water lines. Moreover, such processes have to be repeated over the year, making it extremely expensive and toilsome. Using animals, usually ovines, is an ancient practice used around the world. Animals, grazing in vineyards, feed from the unwanted weeds and fertilize the soil, in an inexpensive, ecological and sustainable way. However, sheep may be dangerous to vines since they tend to feed on grapes and on the lower branches of the vines, which causes enormous production losses. To overcome that issue, sheep were traditionally used to weed vineyards only before the beginning of the growth cycle of grapevines, thus still requiring the use of mechanical and/or chemical methods during the remainder of the production cycle. To mitigate the problems above, a new technological solution was investigated under the scope of the SheepIT project and developed in the scope of this thesis. The system monitors sheep during grazing periods on vineyards and implements a posture control mechanism to instruct them to feed only from the undesired weeds. This mechanism is based on an IoT architecture, being designed to be compact and energy efficient, allowing it to be carried by sheep while attaining an autonomy of weeks. In this context, the thesis herein sustained states that it is possible to design an IoT-based system capable of monitoring and conditioning sheep’s posture, enabling a safe weeding process in vineyards. Moreover, we support such thesis in three main pillars that match the main contributions of this work and that are duly explored and validated, namely: the IoT architecture design and required communications, a posture control mechanism and the support for a low-cost and low-power localization mechanism. The system architecture is validated mainly in simulation context while the posture control mechanism is validated both in simulations and field experiments. Furthermore, we demonstrate the feasibility of the system and the contribution of this work towards the first commercial version of the system.O constante crescimento de ervas infestantes obriga os produtores a manter um processo contínuo de remoção das mesmas com recurso a mecanismos mecânicos e/ou químicos. Entre os mais populares, destacam-se o uso de arados e roçadores no primeiro grupo, e o uso de herbicidas no segundo grupo. No entanto, estes mecanismos são considerados agressivos para as videiras, assim como no segundo caso perigosos para a saúde pública, visto que os químicos podem permanecer no ambiente, contaminando frutos e linhas de água. Adicionalmente, estes processos são caros e exigem mão de obra que escasseia nos dias de hoje, agravado pela necessidade destes processos necessitarem de serem repetidos mais do que uma vez ao longo do ano. O uso de animais, particularmente ovelhas, para controlar o crescimento de infestantes é uma prática ancestral usada em todo o mundo. As ovelhas, enquanto pastam, controlam o crescimento das ervas infestantes, ao mesmo tempo que fertilizam o solo de forma gratuita, ecológica e sustentável. Não obstante, este método foi sendo abandonado visto que os animais também se alimentam da rama, rebentos e frutos da videira, provocando naturais estragos e prejuízos produtivos. Para mitigar este problema, uma nova solução baseada em tecnologias de Internet das Coisas é proposta no âmbito do projeto SheepIT, cuja espinha dorsal foi construída no âmbito desta tese. O sistema monitoriza as ovelhas enquanto estas pastoreiam nas vinhas, e implementam um mecanismo de controlo de postura que condiciona o seu comportamento de forma a que se alimentem apenas das ervas infestantes. O sistema foi incorporado numa infraestrutura de Internet das Coisas com comunicações sem fios de baixo consumo para recolha de dados e que permite semanas de autonomia, mantendo os dispositivos com um tamanho adequado aos animais. Neste contexto, a tese suportada neste trabalho defende que é possível projetar uma sistema baseado em tecnologias de Internet das Coisas, capaz de monitorizar e condicionar a postura de ovelhas, permitindo que estas pastem em vinhas sem comprometer as videiras e as uvas. A tese é suportada em três pilares fundamentais que se refletem nos principais contributos do trabalho, particularmente: a arquitetura do sistema e respetivo sistema de comunicações; o mecanismo de controlo de postura; e o suporte para implementação de um sistema de localização de baixo custo e baixo consumo energético. A arquitetura é validada em contexto de simulação, e o mecanismo de controlo de postura em contexto de simulação e de experiências em campo. É também demonstrado o funcionamento do sistema e o contributo deste trabalho para a conceção da primeira versão comercial do sistema.Programa Doutoral em Informátic

    Intégration des méthodes formelles dans le développement des RCSFs

    Get PDF
    In this thesis, we have relied on formal techniques in order to first evaluate WSN protocols and then to propose solutions that meet the requirements of these networks. The thesis contributes to the modelling, analysis, design and evaluation of WSN protocols. In this context, the thesis begins with a survey on WSN and formal verification techniques. Focusing on the MAC layer, the thesis reviews proposed MAC protocols for WSN as well as their design challenges. The dissertation then proceeds to outline the contributions of this work. As a first proposal, we develop a stochastic generic model of the 802.11 MAC protocol for an arbitrary network topology and then perform probabilistic evaluation of the protocol using statistical model checking. Considering an alternative power source to operate WSN, energy harvesting, we move to the second proposal where a protocol designed for EH-WSN is modelled and various performance parameters are evaluated. Finally, the thesis explores mobility in WSN and proposes a new MAC protocol, named "Mobility and Energy Harvesting aware Medium Access Control (MEH-MAC)" protocol for dynamic sensor networks powered by ambient energy. The protocol is modelled and verified under several features

    Energy aware performance evaluation of WSNs

    Get PDF
    Distributed sensor networks have been discussed for more than 30 years, but the vision of Wireless Sensor Networks (WSNs) has been brought into reality only by the rapid advancements in the areas of sensor design, information technologies, and wireless networks that have paved the way for the proliferation of WSNs. The unique characteristics of sensor networks introduce new challenges, amongst which prolonging the sensor lifetime is the most important. Energy-efficient solutions are required for each aspect of WSN design to deliver the potential advantages of the WSN phenomenon, hence in both existing and future solutions for WSNs, energy efficiency is a grand challenge. The main contribution of this thesis is to present an approach considering the collaborative nature of WSNs and its correlation characteristics, providing a tool which considers issues from physical to application layer together as entities to enable the framework which facilitates the performance evaluation of WSNs. The simulation approach considered provides a clear separation of concerns amongst software architecture of the applications, the hardware configuration and the WSN deployment unlike the existing tools for evaluation. The reuse of models across projects and organizations is also promoted while realistic WSN lifetime estimations and performance evaluations are possible in attempts of improving performance and maximizing the lifetime of the network. In this study, simulations are carried out with careful assumptions for various layers taking into account the real time characteristics of WSN. The sensitivity of WSN systems are mainly due to their fragile nature when energy consumption is considered. The case studies presented demonstrate the importance of various parameters considered in this study. Simulation-based studies are presented, taking into account the realistic settings from each layer of the protocol stack. Physical environment is considered as well. The performance of the layered protocol stack in realistic settings reveals several important interactions between different layers. These interactions are especially important for the design of WSNs in terms of maximizing the lifetime of the network

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks
    corecore