47 research outputs found

    Building and exploiting context on the web

    Get PDF
    [no abstract

    Social and Semantic Contexts in Tourist Mobile Applications

    Get PDF
    The ongoing growth of the World Wide Web along with the increase possibility of access information through a variety of devices in mobility, has defi nitely changed the way users acquire, create, and personalize information, pushing innovative strategies for annotating and organizing it. In this scenario, Social Annotation Systems have quickly gained a huge popularity, introducing millions of metadata on di fferent Web resources following a bottom-up approach, generating free and democratic mechanisms of classi cation, namely folksonomies. Moving away from hierarchical classi cation schemas, folksonomies represent also a meaningful mean for identifying similarities among users, resources and tags. At any rate, they suff er from several limitations, such as the lack of specialized tools devoted to manage, modify, customize and visualize them as well as the lack of an explicit semantic, making di fficult for users to bene fit from them eff ectively. Despite appealing promises of Semantic Web technologies, which were intended to explicitly formalize the knowledge within a particular domain in a top-down manner, in order to perform intelligent integration and reasoning on it, they are still far from reach their objectives, due to di fficulties in knowledge acquisition and annotation bottleneck. The main contribution of this dissertation consists in modeling a novel conceptual framework that exploits both social and semantic contextual dimensions, focusing on the domain of tourism and cultural heritage. The primary aim of our assessment is to evaluate the overall user satisfaction and the perceived quality in use thanks to two concrete case studies. Firstly, we concentrate our attention on contextual information and navigation, and on authoring tool; secondly, we provide a semantic mapping of tags of the system folksonomy, contrasted and compared to the expert users' classi cation, allowing a bridge between social and semantic knowledge according to its constantly mutual growth. The performed user evaluations analyses results are promising, reporting a high level of agreement on the perceived quality in use of both the applications and of the speci c analyzed features, demonstrating that a social-semantic contextual model improves the general users' satisfactio

    基于分众分类的核电专家知识推荐算法研究

    Get PDF
    核电企业搜索引擎系统由于相关领域的专业性,可以将专家用户浏览过的专业领域的文档进行记录,作为专家知识推荐给普通用户,提高搜索引擎的使用效率。本文提出了基于分众分类的核电专家知识推荐算法,帮助普通用户方便、有效地定位到有价值的知识

    Learning and Leveraging Structured Knowledge from User-Generated Social Media Data

    Get PDF
    Knowledge has long been a crucial element in Artificial Intelligence (AI), which can be traced back to knowledge-based systems, or expert systems, in the 1960s. Knowledge provides contexts to facilitate machine understanding and improves the explainability and performance of many semantic-based applications. The acquisition of knowledge is, however, a complex step, normally requiring much effort and time from domain experts. In machine learning as one key domain of AI, the learning and leveraging of structured knowledge, such as ontologies and knowledge graphs, have become popular in recent years with the advent of massive user-generated social media data. The main hypothesis in this thesis is therefore that a substantial amount of useful knowledge can be derived from user-generated social media data. A popular, common type of social media data is social tagging data, accumulated from users' tagging in social media platforms. Social tagging data exhibit unstructured characteristics, including noisiness, flatness, sparsity, incompleteness, which prevent their efficient knowledge discovery and usage. The aim of this thesis is thus to learn useful structured knowledge from social media data regarding these unstructured characteristics. Several research questions have then been formulated related to the hypothesis and the research challenges. A knowledge-centred view has been considered throughout this thesis: knowledge bridges the gap between massive user-generated data to semantic-based applications. The study first reviews concepts related to structured knowledge, then focuses on two main parts, learning structured knowledge and leveraging structured knowledge from social tagging data. To learn structured knowledge, a machine learning system is proposed to predict subsumption relations from social tags. The main idea is to learn to predict accurate relations with features, generated with probabilistic topic modelling and founded on a formal set of assumptions on deriving subsumption relations. Tag concept hierarchies can then be organised to enrich existing Knowledge Bases (KBs), such as DBpedia and ACM Computing Classification Systems. The study presents relation-level evaluation, ontology-level evaluation, and the novel, Knowledge Base Enrichment based evaluation, and shows that the proposed approach can generate high quality and meaningful hierarchies to enrich existing KBs. To leverage structured knowledge of tags, the research focuses on the task of automated social annotation and propose a knowledge-enhanced deep learning model. Semantic-based loss regularisation has been proposed to enhance the deep learning model with the similarity and subsumption relations between tags. Besides, a novel, guided attention mechanism, has been proposed to mimic the users' behaviour of reading the title before digesting the content for annotation. The integrated model, Joint Multi-label Attention Network (JMAN), significantly outperformed the state-of-the-art, popular baseline methods, with consistent performance gain of the semantic-based loss regularisers on several deep learning models, on four real-world datasets. With the careful treatment of the unstructured characteristics and with the novel probabilistic and neural network based approaches, useful knowledge can be learned from user-generated social media data and leveraged to support semantic-based applications. This validates the hypothesis of the research and addresses the research questions. Future studies are considered to explore methods to efficiently learn and leverage other various types of structured knowledge and to extend current approaches to other user-generated data
    corecore