20 research outputs found

    Leveraging Metadata for Extracting Robust Multi-Variate Temporal Features

    Get PDF
    abstract: In recent years, there are increasing numbers of applications that use multi-variate time series data where multiple uni-variate time series coexist. However, there is a lack of systematic of multi-variate time series. This thesis focuses on (a) defining a simplified inter-related multi-variate time series (IMTS) model and (b) developing robust multi-variate temporal (RMT) feature extraction algorithm that can be used for locating, filtering, and describing salient features in multi-variate time series data sets. The proposed RMT feature can also be used for supporting multiple analysis tasks, such as visualization, segmentation, and searching / retrieving based on multi-variate time series similarities. Experiments confirm that the proposed feature extraction algorithm is highly efficient and effective in identifying robust multi-scale temporal features of multi-variate time series.Dissertation/ThesisM.S. Computer Science 201

    Multi-Variate Time Series Similarity Measures and Their Robustness Against Temporal Asynchrony

    Get PDF
    abstract: The amount of time series data generated is increasing due to the integration of sensor technologies with everyday applications, such as gesture recognition, energy optimization, health care, video surveillance. The use of multiple sensors simultaneously for capturing different aspects of the real world attributes has also led to an increase in dimensionality from uni-variate to multi-variate time series. This has facilitated richer data representation but also has necessitated algorithms determining similarity between two multi-variate time series for search and analysis. Various algorithms have been extended from uni-variate to multi-variate case, such as multi-variate versions of Euclidean distance, edit distance, dynamic time warping. However, it has not been studied how these algorithms account for asynchronous in time series. Human gestures, for example, exhibit asynchrony in their patterns as different subjects perform the same gesture with varying movements in their patterns at different speeds. In this thesis, we propose several algorithms (some of which also leverage metadata describing the relationships among the variates). In particular, we present several techniques that leverage the contextual relationships among the variates when measuring multi-variate time series similarities. Based on the way correlation is leveraged, various weighing mechanisms have been proposed that determine the importance of a dimension for discriminating between the time series as giving the same weight to each dimension can led to misclassification. We next study the robustness of the considered techniques against different temporal asynchronies, including shifts and stretching. Exhaustive experiments were carried on datasets with multiple types and amounts of temporal asynchronies. It has been observed that accuracy of algorithms that rely on data to discover variate relationships can be low under the presence of temporal asynchrony, whereas in case of algorithms that rely on external metadata, robustness against asynchronous distortions tends to be stronger. Specifically, algorithms using external metadata have better classification accuracy and cluster separation than existing state-of-the-art work, such as EROS, PCA, and naive dynamic time warping.Dissertation/ThesisMasters Thesis Computer Science 201

    Preface

    Get PDF
    7th International Conference on Similarity Search and Applications (SISAP).\ud Los Cabos, MĂ©xico. 29-31 october 2014

    Leveraging metadata for identifying local, robust multi-variate temporal (RMT) features

    No full text

    Automatic Generation of Personalized Recommendations in eCoaching

    Get PDF
    Denne avhandlingen omhandler eCoaching for personlig livsstilsstÞtte i sanntid ved bruk av informasjons- og kommunikasjonsteknologi. Utfordringen er Ä designe, utvikle og teknisk evaluere en prototyp av en intelligent eCoach som automatisk genererer personlige og evidensbaserte anbefalinger til en bedre livsstil. Den utviklede lÞsningen er fokusert pÄ forbedring av fysisk aktivitet. Prototypen bruker bÊrbare medisinske aktivitetssensorer. De innsamlede data blir semantisk representert og kunstig intelligente algoritmer genererer automatisk meningsfulle, personlige og kontekstbaserte anbefalinger for mindre stillesittende tid. Oppgaven bruker den veletablerte designvitenskapelige forskningsmetodikken for Ä utvikle teoretiske grunnlag og praktiske implementeringer. Samlet sett fokuserer denne forskningen pÄ teknologisk verifisering snarere enn klinisk evaluering.publishedVersio

    Machine Learning Methods with Noisy, Incomplete or Small Datasets

    Get PDF
    In many machine learning applications, available datasets are sometimes incomplete, noisy or affected by artifacts. In supervised scenarios, it could happen that label information has low quality, which might include unbalanced training sets, noisy labels and other problems. Moreover, in practice, it is very common that available data samples are not enough to derive useful supervised or unsupervised classifiers. All these issues are commonly referred to as the low-quality data problem. This book collects novel contributions on machine learning methods for low-quality datasets, to contribute to the dissemination of new ideas to solve this challenging problem, and to provide clear examples of application in real scenarios
    corecore