86 research outputs found

    Rise of the Planet of Serverless Computing: A Systematic Review

    Get PDF
    Serverless computing is an emerging cloud computing paradigm, being adopted to develop a wide range of software applications. It allows developers to focus on the application logic in the granularity of function, thereby freeing developers from tedious and error-prone infrastructure management. Meanwhile, its unique characteristic poses new challenges to the development and deployment of serverless-based applications. To tackle these challenges, enormous research efforts have been devoted. This paper provides a comprehensive literature review to characterize the current research state of serverless computing. Specifically, this paper covers 164 papers on 17 research directions of serverless computing, including performance optimization, programming framework, application migration, multi-cloud development, testing and debugging, etc. It also derives research trends, focus, and commonly-used platforms for serverless computing, as well as promising research opportunities

    Machine Learning Research Trends in Africa: A 30 Years Overview with Bibliometric Analysis Review

    Full text link
    In this paper, a critical bibliometric analysis study is conducted, coupled with an extensive literature survey on recent developments and associated applications in machine learning research with a perspective on Africa. The presented bibliometric analysis study consists of 2761 machine learning-related documents, of which 98% were articles with at least 482 citations published in 903 journals during the past 30 years. Furthermore, the collated documents were retrieved from the Science Citation Index EXPANDED, comprising research publications from 54 African countries between 1993 and 2021. The bibliometric study shows the visualization of the current landscape and future trends in machine learning research and its application to facilitate future collaborative research and knowledge exchange among authors from different research institutions scattered across the African continent

    Deep Learning Data and Indexes in a Database

    Get PDF
    A database is used to store and retrieve data, which is a critical component for any software application. Databases requires configuration for efficiency, however, there are tens of configuration parameters. It is a challenging task to manually configure a database. Furthermore, a database must be reconfigured on a regular basis to keep up with newer data and workload. The goal of this thesis is to use the query workload history to autonomously configure the database and improve its performance. We achieve proposed work in four stages: (i) we develop an index recommender using deep reinforcement learning for a standalone database. We evaluated the effectiveness of our algorithm by comparing with several state-of-the-art approaches, (ii) we build a real-time index recommender that can, in real-time, dynamically create and remove indexes for better performance in response to sudden changes in the query workload, (iii) we develop a database advisor. Our advisor framework will be able to learn latent patterns from a workload. It is able to enhance a query, recommend interesting queries, and summarize a workload, (iv) we developed LinkSocial, a fast, scalable, and accurate framework to gain deeper insights from heterogeneous data

    Structured machine learning models for robustness against different factors of variability in robot control

    Get PDF
    An important feature of human sensorimotor skill is our ability to learn to reuse them across different environmental contexts, in part due to our understanding of attributes of variability in these environments. This thesis explores how the structure of models used within learning for robot control could similarly help autonomous robots cope with variability, hence achieving skill generalisation. The overarching approach is to develop modular architectures that judiciously combine different forms of inductive bias for learning. In particular, we consider how models and policies should be structured in order to achieve robust behaviour in the face of different factors of variation - in the environment, in objects and in other internal parameters of a policy - with the end goal of more robust, accurate and data-efficient skill acquisition and adaptation. At a high level, variability in skill is determined by variations in constraints presented by the external environment, and in task-specific perturbations that affect the specification of optimal action. A typical example of environmental perturbation would be variation in lighting and illumination, affecting the noise characteristics of perception. An example of task perturbations would be variation in object geometry, mass or friction, and in the specification of costs associated with speed or smoothness of execution. We counteract these factors of variation by exploring three forms of structuring: utilising separate data sets curated according to the relevant factor of variation, building neural network models that incorporate this factorisation into the very structure of the networks, and learning structured loss functions. The thesis is comprised of four projects exploring this theme within robotics planning and prediction tasks. Firstly, in the setting of trajectory prediction in crowded scenes, we explore a modular architecture for learning static and dynamic environmental structure. We show that factorising the prediction problem from the individual representations allows for robust and label efficient forward modelling, and relaxes the need for full model re-training in new environments. This modularity explicitly allows for a more flexible and interpretable adaptation of trajectory prediction models to using pre-trained state of the art models. We show that this results in more efficient motion prediction and allows for performance comparable to the state-of-the-art supervised 2D trajectory prediction. Next, in the domain of contact-rich robotic manipulation, we consider a modular architecture that combines model-free learning from demonstration, in particular dynamic movement primitives (DMP), with modern model-free reinforcement learning (RL), using both on-policy and off-policy approaches. We show that factorising the skill learning problem to skill acquisition and error correction through policy adaptation strategies such as residual learning can help improve the overall performance of policies in the context of contact-rich manipulation. Our empirical evaluation demonstrates how to best do this with DMPs and propose “residual Learning from Demonstration“ (rLfD), a framework that combines DMPs with RL to learn a residual correction policy. Our evaluations, performed both in simulation and on a physical system, suggest that applying residual learning directly in task space and operating on the full pose of the robot can significantly improve the overall performance of DMPs. We show that rLfD offers a gentle to the joints solution that improves the task success and generalisation of DMPs. Last but not least, our study shows that the extracted correction policies can be transferred to different geometries and frictions through few-shot task adaptation. Third, we employ meta learning to learn time-invariant reward functions, wherein both the objectives of a task (i.e., the reward functions) and the policy for performing that task optimally are learnt simultaneously. We propose a novel inverse reinforcement learning (IRL) formulation that allows us to 1) vary the length of execution by learning time-invariant costs, and 2) relax the temporal alignment requirements for learning from demonstration. We apply our method to two different types of cost formulations and evaluate their performance in the context of learning reward functions for simulated placement and peg in hole tasks executed on a 7DoF Kuka IIWA arm. Our results show that our approach enables learning temporally invariant rewards from misaligned demonstration that can also generalise spatially to out of distribution tasks. Finally, we employ our observations to evaluate adversarial robustness in the context of transfer learning from a source trained on CIFAR 100 to a target network trained on CIFAR 10. Specifically, we study the effects of using robust optimisation in the source and target networks. This allows us to identify transfer learning strategies under which adversarial defences are successfully retained, in addition to revealing potential vulnerabilities. We study the extent to which adversarially robust features can preserve their defence properties against black and white-box attacks under three different transfer learning strategies. Our empirical evaluations give insights on how well adversarial robustness under transfer learning can generalise.

    Towards Reliable Machine Learning in Evolving Data Streams

    Get PDF
    Data streams are ubiquitous in many areas of modern life. For example, applications in healthcare, education, finance, or advertising often deal with large-scale and evolving data streams. Compared to stationary applications, data streams pose considerable additional challenges for automated decision making and machine learning. Indeed, online machine learning methods must cope with limited memory capacities, real-time requirements, and drifts in the data generating process. At the same time, online learning methods should provide a high predictive quality, stability in the presence of input noise, and good interpretability in order to be reliably used in practice. In this thesis, we address some of the most important aspects of machine learning in evolving data streams. Specifically, we identify four open issues related to online feature selection, concept drift detection, online classification, local explainability, and the evaluation of online learning methods. In these contexts, we present new theoretical and empirical findings as well as novel frameworks and implementations. In particular, we propose new approaches for online feature selection and concept drift detection that can account for model uncertainties and thus achieve more stable results. Moreover, we introduce a new incremental decision tree that retains valuable interpretability properties and a new change detection framework that allows for more efficient explanations based on local feature attributions. In fact, this is one of the first works to address intrinsic model interpretability and local explainability in the presence of incremental updates and concept drift. Along with this thesis, we provide extensive open resources related to online machine learning. Notably, we introduce a new Python framework that enables simplified and standardized evaluations and can thus serve as a basis for more comparable online learning experiments in the future. In total, this thesis is based on six publications, five of which were peer-reviewed at the time of publication of this thesis. Our work touches all major areas of predictive modeling in data streams and proposes novel solutions for efficient, stable, interpretable and thus reliable online machine learning.Datenströme sind in vielen Bereichen des modernen Lebens allgegenwĂ€rtig. Beispielsweise haben Anwendungen im Gesundheitswesen, im Bildungswesen, im Finanzwesen oder in der Werbung hĂ€ufig mit großen und sich verĂ€ndernden Datenströmen zu tun. Im Vergleich zu stationĂ€ren Anwendungen stellen Datenströme eine erhebliche zusĂ€tzliche Herausforderung fĂŒr die automatisierte Entscheidungsfindung und das maschinelle Lernen dar. So mĂŒssen Online Machine Learning-Verfahren mit begrenzten SpeicherkapazitĂ€ten, Echtzeitanforderungen und VerĂ€nderungen des Daten-generierenden Prozesses zurechtkommen. Gleichzeitig sollten Online Learning-Verfahren eine hohe VorhersagequalitĂ€t, StabilitĂ€t bei Eingangsrauschen und eine gute Interpretierbarkeit aufweisen, um in der Praxis zuverlĂ€ssig eingesetzt werden zu können. In dieser Arbeit befassen wir uns mit einigen der wichtigsten Aspekte des maschinellen Lernens in sich entwickelnden Datenströmen. Insbesondere identifizieren wir vier offene Fragen im Zusammenhang mit Online Feature Selection, Concept Drift Detection, Online-Klassifikation, lokaler ErklĂ€rbarkeit und der Bewertung von Online Learning-Methoden. In diesem Kontext prĂ€sentieren wir neue theoretische und empirische Erkenntnisse sowie neue Frameworks und Implementierungen. Insbesondere schlagen wir neue AnsĂ€tze fĂŒr Online Feature Selection und Concept Drift Detection vor, die Unsicherheiten im Modell berĂŒcksichtigen und dadurch stabilere Ergebnisse erzielen können. DarĂŒber hinaus stellen wir einen neuen inkrementellen Entscheidungsbaum vor, der wertvolle Eigenschaften hinsichtlich der Interpretierbarkeit einhĂ€lt, sowie ein neues Framework zur Erkennung von VerĂ€nderungen, das effizientere ErklĂ€rungen auf der Grundlage lokaler Feature Attributions ermöglicht. TatsĂ€chlich ist dies eine der ersten Arbeiten, die sich mit intrinsischer Interpretierbarkeit von Modellen und lokaler ErklĂ€rbarkeit bei inkrementellen Aktualisierungen und Concept Drift befasst. Gemeinsam mit dieser Arbeit stellen wir umfangreiche Ressourcen fĂŒr Online Machine Learning zur VerfĂŒgung. Insbesondere stellen wir ein neues Python-Framework vor, das vereinfachte und standardisierte Auswertungen ermöglicht und kĂŒnftig somit als Grundlage fĂŒr vergleichbare Online Learning-Experimente dienen kann. Insgesamt stĂŒtzt sich diese Arbeit auf sechs Publikationen, von denen fĂŒnf zum Zeitpunkt der Veröffentlichung der Dissertation bereits im Peer-Review Format begutachtet wurden. Unsere Arbeit berĂŒhrt alle wichtigen Bereiche der prĂ€diktiven Modellierung in Datenströmen und schlĂ€gt neuartige Lösungen fĂŒr effizientes, stabiles, interpretierbares und damit zuverlĂ€ssiges Online Machine Learning vor

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments
    • 

    corecore