10,061 research outputs found

    Unsupervised String Transformation Learning for Entity Consolidation

    Full text link
    Data integration has been a long-standing challenge in data management with many applications. A key step in data integration is entity consolidation. It takes a collection of clusters of duplicate records as input and produces a single "golden record" for each cluster, which contains the canonical value for each attribute. Truth discovery and data fusion methods, as well as Master Data Management (MDM) systems, can be used for entity consolidation. However, to achieve better results, the variant values (i.e., values that are logically the same with different formats) in the clusters need to be consolidated before applying these methods. For this purpose, we propose a data-driven method to standardize the variant values based on two observations: (1) the variant values usually can be transformed to the same representation (e.g., "Mary Lee" and "Lee, Mary") and (2) the same transformation often appears repeatedly across different clusters (e.g., transpose the first and last name). Our approach first uses an unsupervised method to generate groups of value pairs that can be transformed in the same way (i.e., they share a transformation). Then the groups are presented to a human for verification and the approved ones are used to standardize the data. In a real-world dataset with 17,497 records, our method achieved 75% recall and 99.5% precision in standardizing variant values by asking a human 100 yes/no questions, which completely outperformed a state of the art data wrangling tool

    OpenTag: Open Attribute Value Extraction from Product Profiles [Deep Learning, Active Learning, Named Entity Recognition]

    Full text link
    Extraction of missing attribute values is to find values describing an attribute of interest from a free text input. Most past related work on extraction of missing attribute values work with a closed world assumption with the possible set of values known beforehand, or use dictionaries of values and hand-crafted features. How can we discover new attribute values that we have never seen before? Can we do this with limited human annotation or supervision? We study this problem in the context of product catalogs that often have missing values for many attributes of interest. In this work, we leverage product profile information such as titles and descriptions to discover missing values of product attributes. We develop a novel deep tagging model OpenTag for this extraction problem with the following contributions: (1) we formalize the problem as a sequence tagging task, and propose a joint model exploiting recurrent neural networks (specifically, bidirectional LSTM) to capture context and semantics, and Conditional Random Fields (CRF) to enforce tagging consistency, (2) we develop a novel attention mechanism to provide interpretable explanation for our model's decisions, (3) we propose a novel sampling strategy exploring active learning to reduce the burden of human annotation. OpenTag does not use any dictionary or hand-crafted features as in prior works. Extensive experiments in real-life datasets in different domains show that OpenTag with our active learning strategy discovers new attribute values from as few as 150 annotated samples (reduction in 3.3x amount of annotation effort) with a high F-score of 83%, outperforming state-of-the-art models.Comment: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, UK, August 19-23, 201

    When in doubt ask the crowd : leveraging collective intelligence for improving event detection and machine learning

    Get PDF
    [no abstract
    • …
    corecore