151 research outputs found

    Keystroke Biometrics in Response to Fake News Propagation in a Global Pandemic

    Full text link
    This work proposes and analyzes the use of keystroke biometrics for content de-anonymization. Fake news have become a powerful tool to manipulate public opinion, especially during major events. In particular, the massive spread of fake news during the COVID-19 pandemic has forced governments and companies to fight against missinformation. In this context, the ability to link multiple accounts or profiles that spread such malicious content on the Internet while hiding in anonymity would enable proactive identification and blacklisting. Behavioral biometrics can be powerful tools in this fight. In this work, we have analyzed how the latest advances in keystroke biometric recognition can help to link behavioral typing patterns in experiments involving 100,000 users and more than 1 million typed sequences. Our proposed system is based on Recurrent Neural Networks adapted to the context of content de-anonymization. Assuming the challenge to link the typed content of a target user in a pool of candidate profiles, our results show that keystroke recognition can be used to reduce the list of candidate profiles by more than 90%. In addition, when keystroke is combined with auxiliary data (such as location), our system achieves a Rank-1 identification performance equal to 52.6% and 10.9% for a background candidate list composed of 1K and 100K profiles, respectively.Comment: arXiv admin note: text overlap with arXiv:2004.0362

    Keystroke and Touch-dynamics Based Authentication for Desktop and Mobile Devices

    Get PDF
    The most commonly used system on desktop computers is a simple username and password approach which assumes that only genuine users know their own credentials. Once broken, the system will accept every authentication trial using compromised credentials until the breach is detected. Mobile devices, such as smart phones and tablets, have seen an explosive increase for personal computing and internet browsing. While the primary mode of interaction in such devices is through their touch screen via gestures, the authentication procedures have been inherited from keyboard-based computers, e.g. a Personal Identification Number, or a gesture based password, etc.;This work provides contributions to advance two types of behavioral biometrics applicable to desktop and mobile computers: keystroke dynamics and touch dynamics. Keystroke dynamics relies upon the manner of typing rather than what is typed to authenticate users. Similarly, a continual touch based authentication that actively authenticates the user is a more natural alternative for mobile devices.;Within the keystroke dynamics domain, habituation refers to the evolution of user typing pattern over time. This work details the significant impact of habituation on user behavior. It offers empirical evidence of the significant impact on authentication systems attempting to identify a genuine user affected by habituation, and the effect of habituation on similarities between users and impostors. It also proposes a novel effective feature for the keystroke dynamics domain called event sequences. We show empirically that unlike features from traditional keystroke dynamics literature, event sequences are independent of typing speed. This provides a unique advantage in distinguishing between users when typing complex text.;With respect to touch dynamics, an immense variety of mobile devices are available for consumers, differing in size, aspect ratio, operating systems, hardware and software specifications to name a few. An effective touch based authentication system must be able to work with one user model across a spectrum of devices and user postures. This work uses a locally collected dataset to provide empirical evidence of the significant effect of posture, device size and manufacturer on user authentication performance. Based on the results of this strand of research, we suggest strategies to improve the performance of continual touch based authentication systems

    Seamless Authentication for Ubiquitous Devices

    Get PDF
    User authentication is an integral part of our lives; we authenticate ourselves to personal computers and a variety of other things several times a day. Authentication is burdensome. When we wish to access to a computer or a resource, it is an additional task that we need to perform~-- an interruption in our workflow. In this dissertation, we study people\u27s authentication behavior and attempt to make authentication to desktops and smartphones less burdensome for users. First, we present the findings of a user study we conducted to understand people\u27s authentication behavior: things they authenticate to, how and when they authenticate, authentication errors they encounter and why, and their opinions about authentication. In our study, participants performed about 39 authentications per day on average; the majority of these authentications were to personal computers (desktop, laptop, smartphone, tablet) and with passwords, but the number of authentications to other things (e.g., car, door) was not insignificant. We saw a high failure rate for desktop and laptop authentication among our participants, affirming the need for a more usable authentication method. Overall, we found that authentication was a noticeable part of all our participants\u27 lives and burdensome for many participants, but they accepted it as cost of security, devising their own ways to cope with it. Second, we propose a new approach to authentication, called bilateral authentication, that leverages wrist-wearable technology to enable seamless authentication for things that people use with their hands, while wearing a smart wristband. In bilateral authentication two entities (e.g., user\u27s wristband and the user\u27s phone) share their knowledge (e.g., about user\u27s interaction with the phone) to verify the user\u27s identity. Using this approach, we developed a seamless authentication method for desktops and smartphones. Our authentication method offers quick and effortless authentication, continuous user verification while the desktop (or smartphone) is in use, and automatic deauthentication after use. We evaluated our authentication method through four in-lab user studies, evaluating the method\u27s usability and security from the system and the user\u27s perspective. Based on the evaluation, our authentication method shows promise for reducing users\u27 authentication burden for desktops and smartphones

    State of the Art in Biometric Key Binding and Key Generation Schemes

    Get PDF
    Direct storage of biometric templates in databases exposes the authentication system and legitimate users to numerous security and privacy challenges. Biometric cryptosystems or template protection schemes are used to overcome the security and privacy challenges associated with the use of biometrics as a means of authentication. This paper presents a review of previous works in biometric key binding and key generation schemes. The review focuses on key binding techniques such as biometric encryption, fuzzy commitment scheme, fuzzy vault and shielding function. Two categories of key generation schemes considered are private template and quantization schemes. The paper also discusses the modes of operations, strengths and weaknesses of various kinds of key-based template protection schemes. The goal is to provide the reader with a clear understanding of the current and emerging trends in key-based biometric cryptosystems

    Biometrics

    Get PDF
    Biometrics uses methods for unique recognition of humans based upon one or more intrinsic physical or behavioral traits. In computer science, particularly, biometrics is used as a form of identity access management and access control. It is also used to identify individuals in groups that are under surveillance. The book consists of 13 chapters, each focusing on a certain aspect of the problem. The book chapters are divided into three sections: physical biometrics, behavioral biometrics and medical biometrics. The key objective of the book is to provide comprehensive reference and text on human authentication and people identity verification from both physiological, behavioural and other points of view. It aims to publish new insights into current innovations in computer systems and technology for biometrics development and its applications. The book was reviewed by the editor Dr. Jucheng Yang, and many of the guest editors, such as Dr. Girija Chetty, Dr. Norman Poh, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park, Dr. Sook Yoon and so on, who also made a significant contribution to the book

    Vulnerability analysis of cyber-behavioral biometric authentication

    Get PDF
    Research on cyber-behavioral biometric authentication has traditionally assumed naïve (or zero-effort) impostors who make no attempt to generate sophisticated forgeries of biometric samples. Given the plethora of adversarial technologies on the Internet, it is questionable as to whether the zero-effort threat model provides a realistic estimate of how these authentication systems would perform in the wake of adversity. To better evaluate the efficiency of these authentication systems, there is need for research on algorithmic attacks which simulate the state-of-the-art threats. To tackle this problem, we took the case of keystroke and touch-based authentication and developed a new family of algorithmic attacks which leverage the intrinsic instability and variability exhibited by users\u27 behavioral biometric patterns. For both fixed-text (or password-based) keystroke and continuous touch-based authentication, we: 1) Used a wide range of pattern analysis and statistical techniques to examine large repositories of biometrics data for weaknesses that could be exploited by adversaries to break these systems, 2) Designed algorithmic attacks whose mechanisms hinge around the discovered weaknesses, and 3) Rigorously analyzed the impact of the attacks on the best verification algorithms in the respective research domains. When launched against three high performance password-based keystroke verification systems, our attacks increased the mean Equal Error Rates (EERs) of the systems by between 28.6% and 84.4% relative to the traditional zero-effort attack. For the touch-based authentication system, the attacks performed even better, as they increased the system\u27s mean EER by between 338.8% and 1535.6% depending on parameters such as the failure-to-enroll threshold and the type of touch gesture subjected to attack. For both keystroke and touch-based authentication, we found that there was a small proportion of users who saw considerably greater performance degradation than others as a result of the attack. There was also a sub-set of users who were completely immune to the attacks. Our work exposes a previously unexplored weakness of keystroke and touch-based authentication and opens the door to the design of behavioral biometric systems which are resistant to statistical attacks

    Snoopy: Sniffing Your Smartwatch Passwords via Deep Sequence Learning

    Get PDF
    Demand for smartwatches has taken off in recent years with new models which can run independently from smartphones and provide more useful features, becoming first-class mobile platforms. One can access online banking or even make payments on a smartwatch without a paired phone. This makes smartwatches more attractive and vulnerable to malicious attacks, which to date have been largely overlooked. In this paper, we demonstrate Snoopy, a password extraction and inference system which is able to accurately infer passwords entered on Android/Apple watches within 20 attempts, just by eavesdropping on motion sensors. Snoopy uses a uniform framework to extract the segments of motion data when passwords are entered, and uses novel deep neural networks to infer the actual passwords. We evaluate the proposed Snoopy system in the real-world with data from 362 participants and show that our system offers a ~ 3-fold improvement in the accuracy of inferring passwords compared to the state-of-the-art, without consuming excessive energy or computational resources. We also show that Snoopy is very resilient to user and device heterogeneity: it can be trained on crowd-sourced motion data (e.g. via Amazon Mechanical Turk), and then used to attack passwords from a new user, even if they are wearing a different model. This paper shows that, in the wrong hands, Snoopy can potentially cause serious leaks of sensitive information. By raising awareness, we invite the community and manufacturers to revisit the risks of continuous motion sensing on smart wearable devices

    Touch-screen Behavioural Biometrics on Mobile Devices

    Get PDF
    Robust user verification on mobile devices is one of the top priorities globally from a financial security and privacy viewpoint and has led to biometric verification complementing or replacing PIN and password methods. Research has shown that behavioural biometric methods, with their promise of improved security due to inimitable nature and the lure of unintrusive, implicit, continuous verification, could define the future of privacy and cyber security in an increasingly mobile world. Considering the real-life nature of problems relating to mobility, this study aims to determine the impact of user interaction factors that affect verification performance and usability for behavioural biometric modalities on mobile devices. Building on existing work on biometric performance assessments, it asks: To what extent does the biometric performance remain stable when faced with movements or change of environment, over time and other device related factors influencing usage of mobile devices in real-life applications? Further it seeks to provide answers to: What could further improve the performance for behavioural biometric modalities? Based on a review of the literature, a series of experiments were executed to collect a dataset consisting of touch dynamics based behavioural data mirroring various real-life usage scenarios of a mobile device. Responses were analysed using various uni-modal and multi-modal frameworks. Analysis demonstrated that existing verification methods using touch modalities of swipes, signatures and keystroke dynamics adapt poorly when faced with a variety of usage scenarios and have challenges related to time persistence. The results indicate that a multi-modal solution does have a positive impact towards improving the verification performance. On this basis, it is recommended to explore alternatives in the form of dynamic, variable thresholds and smarter template selection strategy which hold promise. We believe that the evaluation results presented in this thesis will streamline development of future solutions for improving the security of behavioural-based modalities on mobile biometrics
    corecore