1,686 research outputs found

    Alleviating the new user problem in collaborative filtering by exploiting personality information

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11257-016-9172-zThe new user problem in recommender systems is still challenging, and there is not yet a unique solution that can be applied in any domain or situation. In this paper we analyze viable solutions to the new user problem in collaborative filtering (CF) that are based on the exploitation of user personality information: (a) personality-based CF, which directly improves the recommendation prediction model by incorporating user personality information, (b) personality-based active learning, which utilizes personality information for identifying additional useful preference data in the target recommendation domain to be elicited from the user, and (c) personality-based cross-domain recommendation, which exploits personality information to better use user preference data from auxiliary domains which can be used to compensate the lack of user preference data in the target domain. We benchmark the effectiveness of these methods on large datasets that span several domains, namely movies, music and books. Our results show that personality-aware methods achieve performance improvements that range from 6 to 94 % for users completely new to the system, while increasing the novelty of the recommended items by 3-40 % with respect to the non-personalized popularity baseline. We also discuss the limitations of our approach and the situations in which the proposed methods can be better applied, hence providing guidelines for researchers and practitioners in the field.This work was supported by the Spanish Ministry of Economy and Competitiveness (TIN2013-47090-C3). We thank Michal Kosinski and David Stillwell for their attention regarding the dataset

    Graph Neural Networks Boosted Personalized Tag Recommendation Algorithm

    Get PDF
    Personalized tag recommender systems recommend a set of tags for items based on users’ historical behaviors, and play an important role in the collaborative tagging systems. However, traditional personalized tag recommendation methods cannot guarantee that the collaborative signal hidden in the interactions among entities is effectively encoded in the process of learning the representations of entities, resulting in insufficient expressive capacity for characterizing the preferences or attributes of entities. In this paper, we proposed a graph neural networks boosted personalized tag recommendation model, which integrates the graph neural networks into the pairwise interaction tensor factorization model. Specifically, we consider two types of interaction graph (i.e. the user-tag interaction graph and the item-tag interaction graph) that is derived from the tag assignments. For each interaction graph, we exploit the graph neural networks to capture the collaborative signal that is encoded in the interaction graph and integrate the collaborative signal into the learning of representations of entities by transmitting and assembling the representations of entity neighbors along the interaction graphs. In this way, we explicitly capture the collaborative signal, resulting in rich and meaningful representations of entities. Experimental results on real world datasets show that our proposed graph neural networks boosted personalized tag recommendation model outperforms the traditional tag recommendation models

    Hybrid Recommender Systems: A Systematic Literature Review

    Get PDF
    Recommender systems are software tools used to generate and provide suggestions for items and other entities to the users by exploiting various strategies. Hybrid recommender systems combine two or more recommendation strategies in different ways to benefit from their complementary advantages. This systematic literature review presents the state of the art in hybrid recommender systems of the last decade. It is the first quantitative review work completely focused in hybrid recommenders. We address the most relevant problems considered and present the associated data mining and recommendation techniques used to overcome them. We also explore the hybridization classes each hybrid recommender belongs to, the application domains, the evaluation process and proposed future research directions. Based on our findings, most of the studies combine collaborative filtering with another technique often in a weighted way. Also cold-start and data sparsity are the two traditional and top problems being addressed in 23 and 22 studies each, while movies and movie datasets are still widely used by most of the authors. As most of the studies are evaluated by comparisons with similar methods using accuracy metrics, providing more credible and user oriented evaluations remains a typical challenge. Besides this, newer challenges were also identified such as responding to the variation of user context, evolving user tastes or providing cross-domain recommendations. Being a hot topic, hybrid recommenders represent a good basis with which to respond accordingly by exploring newer opportunities such as contextualizing recommendations, involving parallel hybrid algorithms, processing larger datasets, etc

    Video Recommendations Based on Visual Features Extracted with Deep Learning

    Get PDF
    Postponed access: the file will be accessible after 2022-06-01When a movie is uploaded to a movie Recommender System (e.g., YouTube), the system can exploit various forms of descriptive features (e.g., tags and genre) in order to generate personalized recommendation for users. However, there are situations where the descriptive features are missing or very limited and the system may fail to include such a movie in the recommendation list, known as Cold-start problem. This thesis investigates recommendation based on a novel form of content features, extracted from movies, in order to generate recommendation for users. Such features represent the visual aspects of movies, based on Deep Learning models, and hence, do not require any human annotation when extracted. The proposed technique has been evaluated in both offline and online evaluations using a large dataset of movies. The online evaluation has been carried out in a evaluation framework developed for this thesis. Results from the offline and online evaluation (N=150) show that automatically extracted visual features can mitigate the cold-start problem by generating recommendation with a superior quality compared to different baselines, including recommendation based on human-annotated features. The results also point to subtitles as a high-quality future source of automatically extracted features. The visual feature dataset, named DeepCineProp13K and the subtitle dataset, CineSub3K, as well as the proposed evaluation framework are all made openly available online in a designated Github repository.Masteroppgave i informasjonsvitenskapINFO390MASV-INF

    Probabilistic Personalized Recommendation Models For Heterogeneous Social Data

    Get PDF
    Content recommendation has risen to a new dimension with the advent of platforms like Twitter, Facebook, FriendFeed, Dailybooth, and Instagram. Although this uproar of data has provided us with a goldmine of real-world information, the problem of information overload has become a major barrier in developing predictive models. Therefore, the objective of this The- sis is to propose various recommendation, prediction and information retrieval models that are capable of leveraging such vast heterogeneous content. More specifically, this Thesis focuses on proposing models based on probabilistic generative frameworks for the following tasks: (a) recommending backers and projects in Kickstarter crowdfunding domain and (b) point of interest recommendation in Foursquare. Through comprehensive set of experiments over a variety of datasets, we show that our models are capable of providing practically useful results for recommendation and information retrieval tasks
    • …
    corecore