2,756 research outputs found

    Using Similarity Metrics on Real World Data and Patient Treatment Pathways to Recommend the Next Treatment

    Get PDF
    Non-small-cell lung cancer (NSCLC) is one of the most prevalent types of lung cancer and continues to have an ominous five year survival rate. Considerable work has been accomplished in analyzing the viability of the treatments offered to NSCLC patients; however, while many of these treatments have performed better over populations of diagnosed NSCLC patients, a specific treatment may not be the most effective therapy for a given patient. Coupling both patient similarity metrics using the Gower similarity metric and prior treatment knowledge, we were able to demonstrate how patient analytics can complement clinical efforts in recommending the next best treatment. Our retrospective and exploratory results indicate that a majority of patients are not recommended the best surviving therapy once they require a new therapy. This investigation lays the groundwork for treatment recommendation using analytics, but more investigation is required to analyze patient outcomes beyond survival

    Leveraging high-resolution omics data for predicting responses and adverse events to immune checkpoint inhibitors

    Get PDF
    A long-standing goal of personalized and precision medicine is to enable accurate prediction of the outcomes of a given treatment regimen for patients harboring a disease. Currently, many clinical trials fail to meet their endpoints due to underlying factors in the patient population that contribute to either poor responses to the drug of interest or to treatment-related adverse events. Identifying these factors beforehand and correcting for them can lead to an increased success of clinical trials. Comprehensive and large-scale data gathering efforts in biomedicine by omics profiling of the healthy and diseased individuals has led to a treasure-trove of host, disease and environmental factors that contribute to the effectiveness of drugs aiming to treat disease. With increasing omics data, artificial intelligence allows an in-depth analysis of big data and offers a wide range of applications for real-world clinical use, including improved patient selection and identification of actionable targets for companion therapeutics for improved translatability across more patients. As a blueprint for complex drug-disease-host interactions, we here discuss the challenges of utilizing omics data for predicting responses and adverse events in cancer immunotherapy with immune checkpoint inhibitors (ICIs). The omics-based methodologies for improving patient outcomes as in the ICI case have also been applied across a wide-range of complex disease settings, exemplifying the use of omics for in-depth disease profiling and clinical use

    Artificial intelligence for imaging in immunotherapy

    Get PDF

    Use of Advanced Flexible Modeling Approaches for Survival Extrapolation from Early Follow-up Data in two Nivolumab Trials in Advanced NSCLC with Extended Follow-up

    Get PDF
    Objectives: Immuno-oncology (IO) therapies are often associated with delayed responses that are deep and durable, manifesting as long-term survival benefits in patients with metastatic cancer. Complex hazard functions arising from IO treatments may limit the accuracy of extrapolations from standard parametric models (SPMs). We evaluated the ability of flexible parametric models (FPMs) to improve survival extrapolations using data from 2 trials involving patients with non–small-cell lung cancer (NSCLC). Methods: Our analyses used consecutive database locks (DBLs) at 2-, 3-, and 5-y minimum follow-up from trials evaluating nivolumab versus docetaxel in patients with pretreated metastatic squamous (CheckMate-017) and nonsquamous (CheckMate-057) NSCLC. For each DBL, SPMs, as well as 3 FPMs—landmark response models (LRMs), mixture cure models (MCMs), and Bayesian multiparameter evidence synthesis (B-MPES)—were estimated on nivolumab overall survival (OS). The performance of each parametric model was assessed by comparing milestone restricted mean survival times (RMSTs) and survival probabilities with results obtained from externally validated SPMs. Results: For the 2- and 3-y DBLs of both trials, all models tended to underestimate 5-y OS. Predictions from nonvalidated SPMs fitted to the 2-y DBLs were highly unreliable, whereas extrapolations from FPMs were much more consistent between models fitted to successive DBLs. For CheckMate-017, in which an apparent survival plateau emerges in the 3-y DBL, MCMs fitted to this DBL estimated 5-y OS most accurately (11.6% v. 12.3% observed), and long-term predictions were similar to those from the 5-y validated SPM (20-y RMST: 30.2 v. 30.5 mo). For CheckMate-057, where there is no clear evidence of a survival plateau in the early DBLs, only B-MPES was able to accurately predict 5-y OS (14.1% v. 14.0% observed [3-y DBL]). Conclusions: We demonstrate that the use of FPMs for modeling OS in NSCLC patients from early follow-up data can yield accurate estimates for RMST observed with longer follow-up and provide similar long-term extrapolations to externally validated SPMs based on later data cuts. B-MPES generated reasonable predictions even when fitted to the 2-y DBLs of the studies, whereas MCMs were more reliant on longer-term data to estimate a plateau and therefore performed better from 3 y. Generally, LRM extrapolations were less reliable than those from alternative FPMs and validated SPMs but remained superior to nonvalidated SPMs. Our work demonstrates the potential benefits of using advanced parametric models that incorporate external data sources, such as B-MPES and MCMs, to allow for accurate evaluation of treatment clinical and cost-effectiveness from trial data with limited follow-up. Flexible advanced parametric modeling methods can provide improved survival extrapolations for immuno-oncology cost-effectiveness in health technology assessments from early clinical trial data that better anticipate extended follow-up. Advantages include leveraging additional observable trial data, the systematic integration of external data, and more detailed modeling of underlying processes. Bayesian multiparameter evidence synthesis performed particularly well, with well-matched external data. Mixture cure models also performed well but may require relatively longer follow-up to identify an emergent plateau, depending on the specific setting. Landmark response models offered marginal benefits in this scenario and may require greater numbers in each response group and/or increased follow-up to support improved extrapolation within each subgroup

    In silico and in vitro drug screening identifies new therapeutic approaches for Ewing sarcoma.

    Get PDF
    The long-term overall survival of Ewing sarcoma (EWS) patients remains poor; less than 30% of patients with metastatic or recurrent disease survive despite aggressive combinations of chemotherapy, radiation and surgery. To identify new therapeutic options, we employed a multi-pronged approach using in silico predictions of drug activity via an integrated bioinformatics approach in parallel with an in vitro screen of FDA-approved drugs. Twenty-seven drugs and forty-six drugs were identified, respectively, to have anti-proliferative effects for EWS, including several classes of drugs in both screening approaches. Among these drugs, 30 were extensively validated as mono-therapeutic agents and 9 in 14 various combinations in vitro. Two drugs, auranofin, a thioredoxin reductase inhibitor, and ganetespib, an HSP90 inhibitor, were predicted to have anti-cancer activities in silico and were confirmed active across a panel of genetically diverse EWS cells. When given in combination, the survival rate in vivo was superior compared to auranofin or ganetespib alone. Importantly, extensive formulations, dose tolerance, and pharmacokinetics studies demonstrated that auranofin requires alternative delivery routes to achieve therapeutically effective levels of the gold compound. These combined screening approaches provide a rapid means to identify new treatment options for patients with a rare and often-fatal disease

    A Learning Health System for Radiation Oncology

    Get PDF
    The proposed research aims to address the challenges faced by clinical data science researchers in radiation oncology accessing, integrating, and analyzing heterogeneous data from various sources. The research presents a scalable intelligent infrastructure, called the Health Information Gateway and Exchange (HINGE), which captures and structures data from multiple sources into a knowledge base with semantically interlinked entities. This infrastructure enables researchers to mine novel associations and gather relevant knowledge for personalized clinical outcomes. The dissertation discusses the design framework and implementation of HINGE, which abstracts structured data from treatment planning systems, treatment management systems, and electronic health records. It utilizes disease-specific smart templates for capturing clinical information in a discrete manner. HINGE performs data extraction, aggregation, and quality and outcome assessment functions automatically, connecting seamlessly with local IT/medical infrastructure. Furthermore, the research presents a knowledge graph-based approach to map radiotherapy data to an ontology-based data repository using FAIR (Findable, Accessible, Interoperable, Reusable) concepts. This approach ensures that the data is easily discoverable and accessible for clinical decision support systems. The dissertation explores the ETL (Extract, Transform, Load) process, data model frameworks, ontologies, and provides a real-world clinical use case for this data mapping. To improve the efficiency of retrieving information from large clinical datasets, a search engine based on ontology-based keyword searching and synonym-based term matching tool was developed. The hierarchical nature of ontologies is leveraged to retrieve patient records based on parent and children classes. Additionally, patient similarity analysis is conducted using vector embedding models (Word2Vec, Doc2Vec, GloVe, and FastText) to identify similar patients based on text corpus creation methods. Results from the analysis using these models are presented. The implementation of a learning health system for predicting radiation pneumonitis following stereotactic body radiotherapy is also discussed. 3D convolutional neural networks (CNNs) are utilized with radiographic and dosimetric datasets to predict the likelihood of radiation pneumonitis. DenseNet-121 and ResNet-50 models are employed for this study, along with integrated gradient techniques to identify salient regions within the input 3D image dataset. The predictive performance of the 3D CNN models is evaluated based on clinical outcomes. Overall, the proposed Learning Health System provides a comprehensive solution for capturing, integrating, and analyzing heterogeneous data in a knowledge base. It offers researchers the ability to extract valuable insights and associations from diverse sources, ultimately leading to improved clinical outcomes. This work can serve as a model for implementing LHS in other medical specialties, advancing personalized and data-driven medicine

    Nat Cancer

    Get PDF
    The molecular characterization of tumors now informs clinical cancer care for many patients. This advent of molecular oncology has been driven by the expanding number of therapeutic biomarkers that can predict sensitivity to both approved agents and investigational agents. Beyond its role in driving clinical-trial enrollments and guiding therapy in individual patients, large-scale clinical genomics in oncology also represents a rapidly expanding research resource for translational scientific discovery. Here we review the progress, opportunities, and challenges of scientific and translational discovery from prospective clinical genomic screening programs now routinely conducted for patients with cancer.U54 OD020355/OD/NIH HHSUnited States/U54 OD020355/CD/ODCDC CDC HHSUnited States/R01 CA207244/CA/NCI NIH HHSUnited States/P30 CA008748/CA/NCI NIH HHSUnited States/R01 CA245069/CA/NCI NIH HHSUnited States/R01 CA204749/CA/NCI NIH HHSUnited States/2022-04-06T00:00:00Z35122052PMC898517511193vault:4135

    Multimodal Data Fusion and Quantitative Analysis for Medical Applications

    Get PDF
    Medical big data is not only enormous in its size, but also heterogeneous and complex in its data structure, which makes conventional systems or algorithms difficult to process. These heterogeneous medical data include imaging data (e.g., Positron Emission Tomography (PET), Computerized Tomography (CT), Magnetic Resonance Imaging (MRI)), and non-imaging data (e.g., laboratory biomarkers, electronic medical records, and hand-written doctor notes). Multimodal data fusion is an emerging vital field to address this urgent challenge, aiming to process and analyze the complex, diverse and heterogeneous multimodal data. The fusion algorithms bring great potential in medical data analysis, by 1) taking advantage of complementary information from different sources (such as functional-structural complementarity of PET/CT images) and 2) exploiting consensus information that reflects the intrinsic essence (such as the genetic essence underlying medical imaging and clinical symptoms). Thus, multimodal data fusion benefits a wide range of quantitative medical applications, including personalized patient care, more optimal medical operation plan, and preventive public health. Though there has been extensive research on computational approaches for multimodal fusion, there are three major challenges of multimodal data fusion in quantitative medical applications, which are summarized as feature-level fusion, information-level fusion and knowledge-level fusion: • Feature-level fusion. The first challenge is to mine multimodal biomarkers from high-dimensional small-sample multimodal medical datasets, which hinders the effective discovery of informative multimodal biomarkers. Specifically, efficient dimension reduction algorithms are required to alleviate "curse of dimensionality" problem and address the criteria for discovering interpretable, relevant, non-redundant and generalizable multimodal biomarkers. • Information-level fusion. The second challenge is to exploit and interpret inter-modal and intra-modal information for precise clinical decisions. Although radiomics and multi-branch deep learning have been used for implicit information fusion guided with supervision of the labels, there is a lack of methods to explicitly explore inter-modal relationships in medical applications. Unsupervised multimodal learning is able to mine inter-modal relationship as well as reduce the usage of labor-intensive data and explore potential undiscovered biomarkers; however, mining discriminative information without label supervision is an upcoming challenge. Furthermore, the interpretation of complex non-linear cross-modal associations, especially in deep multimodal learning, is another critical challenge in information-level fusion, which hinders the exploration of multimodal interaction in disease mechanism. • Knowledge-level fusion. The third challenge is quantitative knowledge distillation from multi-focus regions on medical imaging. Although characterizing imaging features from single lesions using either feature engineering or deep learning methods have been investigated in recent years, both methods neglect the importance of inter-region spatial relationships. Thus, a topological profiling tool for multi-focus regions is in high demand, which is yet missing in current feature engineering and deep learning methods. Furthermore, incorporating domain knowledge with distilled knowledge from multi-focus regions is another challenge in knowledge-level fusion. To address the three challenges in multimodal data fusion, this thesis provides a multi-level fusion framework for multimodal biomarker mining, multimodal deep learning, and knowledge distillation from multi-focus regions. Specifically, our major contributions in this thesis include: • To address the challenges in feature-level fusion, we propose an Integrative Multimodal Biomarker Mining framework to select interpretable, relevant, non-redundant and generalizable multimodal biomarkers from high-dimensional small-sample imaging and non-imaging data for diagnostic and prognostic applications. The feature selection criteria including representativeness, robustness, discriminability, and non-redundancy are exploited by consensus clustering, Wilcoxon filter, sequential forward selection, and correlation analysis, respectively. SHapley Additive exPlanations (SHAP) method and nomogram are employed to further enhance feature interpretability in machine learning models. • To address the challenges in information-level fusion, we propose an Interpretable Deep Correlational Fusion framework, based on canonical correlation analysis (CCA) for 1) cohesive multimodal fusion of medical imaging and non-imaging data, and 2) interpretation of complex non-linear cross-modal associations. Specifically, two novel loss functions are proposed to optimize the discovery of informative multimodal representations in both supervised and unsupervised deep learning, by jointly learning inter-modal consensus and intra-modal discriminative information. An interpretation module is proposed to decipher the complex non-linear cross-modal association by leveraging interpretation methods in both deep learning and multimodal consensus learning. • To address the challenges in knowledge-level fusion, we proposed a Dynamic Topological Analysis framework, based on persistent homology, for knowledge distillation from inter-connected multi-focus regions in medical imaging and incorporation of domain knowledge. Different from conventional feature engineering and deep learning, our DTA framework is able to explicitly quantify inter-region topological relationships, including global-level geometric structure and community-level clusters. K-simplex Community Graph is proposed to construct the dynamic community graph for representing community-level multi-scale graph structure. The constructed dynamic graph is subsequently tracked with a novel Decomposed Persistence algorithm. Domain knowledge is incorporated into the Adaptive Community Profile, summarizing the tracked multi-scale community topology with additional customizable clinically important factors
    • …
    corecore