501 research outputs found

    Multimodal human machine interactions in industrial environments

    Get PDF
    This chapter will present a review of Human Machine Interaction techniques for industrial applications. A set of recent HMI techniques will be provided with emphasis on multimodal interaction with industrial machines and robots. This list will include Natural Language Processing techniques and others that make use of various complementary interfaces: audio, visual, haptic or gestural, to achieve a more natural human-machine interaction. This chapter will also focus on providing examples and use cases in fields related to multimodal interaction in manufacturing, such as augmented reality. Accordingly, the chapter will present the use of Artificial Intelligence and Multimodal Human Machine Interaction in the context of STAR applications

    A review on manipulation skill acquisition through teleoperation-based learning from demonstration

    Get PDF
    Manipulation skill learning and generalization have gained increasing attention due to the wide applications of robot manipulators and the spurt of robot learning techniques. Especially, the learning from demonstration method has been exploited widely and successfully in the robotic community, and it is regarded as a promising direction to realize the manipulation skill learning and generalization. In addition to the learning techniques, the immersive teleoperation enables the human to operate a remote robot with an intuitive interface and achieve the telepresence. Thus, it is a promising way to transfer manipulation skills from humans to robots by combining the learning methods and the teleoperation, and adapting the learned skills to different tasks in new situations. This review, therefore, aims to provide an overview of immersive teleoperation for skill learning and generalization to deal with complex manipulation tasks. To this end, the key technologies, e.g. manipulation skill learning, multimodal interfacing for teleoperation and telerobotic control, are introduced. Then, an overview is given in terms of the most important applications of immersive teleoperation platform for robot skill learning. Finally, this survey discusses the remaining open challenges and promising research topics

    RoboChop: Autonomous Framework for Fruit and Vegetable Chopping Leveraging Foundational Models

    Full text link
    With the goal of developing fully autonomous cooking robots, developing robust systems that can chop a wide variety of objects is important. Existing approaches focus primarily on the low-level dynamics of the cutting action, which overlooks some of the practical real-world challenges of implementing autonomous cutting systems. In this work we propose an autonomous framework to sequence together action primitives for the purpose of chopping fruits and vegetables on a cluttered cutting board. We present a novel technique to leverage vision foundational models SAM and YOLO to accurately detect, segment, and track fruits and vegetables as they visually change through the sequences of chops, finetuning YOLO on a novel dataset of whole and chopped fruits and vegetables. In our experiments, we demonstrate that our simple pipeline is able to reliably chop a variety of fruits and vegetables ranging in size, appearance, and texture, meeting a variety of chopping specifications, including fruit type, number of slices, and types of slices

    Immersive Technologies in Virtual Companions: A Systematic Literature Review

    Full text link
    The emergence of virtual companions is transforming the evolution of intelligent systems that effortlessly cater to the unique requirements of users. These advanced systems not only take into account the user present capabilities, preferences, and needs but also possess the capability to adapt dynamically to changes in the environment, as well as fluctuations in the users emotional state or behavior. A virtual companion is an intelligent software or application that offers support, assistance, and companionship across various aspects of users lives. Various enabling technologies are involved in building virtual companion, among these, Augmented Reality (AR), and Virtual Reality (VR) are emerging as transformative tools. While their potential for use in virtual companions or digital assistants is promising, their applications in these domains remain relatively unexplored. To address this gap, a systematic review was conducted to investigate the applications of VR, AR, and MR immersive technologies in the development of virtual companions. A comprehensive search across PubMed, Scopus, and Google Scholar yielded 28 relevant articles out of a pool of 644. The review revealed that immersive technologies, particularly VR and AR, play a significant role in creating digital assistants, offering a wide range of applications that brings various facilities in the individuals life in areas such as addressing social isolation, enhancing cognitive abilities and dementia care, facilitating education, and more. Additionally, AR and MR hold potential for enhancing Quality of life (QoL) within the context of virtual companion technology. The findings of this review provide a valuable foundation for further research in this evolving field
    • …
    corecore