817 research outputs found

    Detecting Misinformation with LLM-Predicted Credibility Signals and Weak Supervision

    Full text link
    Credibility signals represent a wide range of heuristics that are typically used by journalists and fact-checkers to assess the veracity of online content. Automating the task of credibility signal extraction, however, is very challenging as it requires high-accuracy signal-specific extractors to be trained, while there are currently no sufficiently large datasets annotated with all credibility signals. This paper investigates whether large language models (LLMs) can be prompted effectively with a set of 18 credibility signals to produce weak labels for each signal. We then aggregate these potentially noisy labels using weak supervision in order to predict content veracity. We demonstrate that our approach, which combines zero-shot LLM credibility signal labeling and weak supervision, outperforms state-of-the-art classifiers on two misinformation datasets without using any ground-truth labels for training. We also analyse the contribution of the individual credibility signals towards predicting content veracity, which provides new valuable insights into their role in misinformation detection

    Detecting Harmful Agendas in News Articles

    Full text link
    Manipulated news online is a growing problem which necessitates the use of automated systems to curtail its spread. We argue that while misinformation and disinformation detection have been studied, there has been a lack of investment in the important open challenge of detecting harmful agendas in news articles; identifying harmful agendas is critical to flag news campaigns with the greatest potential for real world harm. Moreover, due to real concerns around censorship, harmful agenda detectors must be interpretable to be effective. In this work, we propose this new task and release a dataset, NewsAgendas, of annotated news articles for agenda identification. We show how interpretable systems can be effective on this task and demonstrate that they can perform comparably to black-box models.Comment: Camera-ready for ACL-WASSA 202

    Stance detection on social media: State of the art and trends

    Get PDF
    Stance detection on social media is an emerging opinion mining paradigm for various social and political applications in which sentiment analysis may be sub-optimal. There has been a growing research interest for developing effective methods for stance detection methods varying among multiple communities including natural language processing, web science, and social computing. This paper surveys the work on stance detection within those communities and situates its usage within current opinion mining techniques in social media. It presents an exhaustive review of stance detection techniques on social media, including the task definition, different types of targets in stance detection, features set used, and various machine learning approaches applied. The survey reports state-of-the-art results on the existing benchmark datasets on stance detection, and discusses the most effective approaches. In addition, this study explores the emerging trends and different applications of stance detection on social media. The study concludes by discussing the gaps in the current existing research and highlights the possible future directions for stance detection on social media.Comment: We request withdrawal of this article sincerely. We will re-edit this paper. Please withdraw this article before we finish the new versio

    Context-Aware Message-Level Rumour Detection with Weak Supervision

    Get PDF
    Social media has become the main source of all sorts of information beyond a communication medium. Its intrinsic nature can allow a continuous and massive flow of misinformation to make a severe impact worldwide. In particular, rumours emerge unexpectedly and spread quickly. It is challenging to track down their origins and stop their propagation. One of the most ideal solutions to this is to identify rumour-mongering messages as early as possible, which is commonly referred to as "Early Rumour Detection (ERD)". This dissertation focuses on researching ERD on social media by exploiting weak supervision and contextual information. Weak supervision is a branch of ML where noisy and less precise sources (e.g. data patterns) are leveraged to learn limited high-quality labelled data (Ratner et al., 2017). This is intended to reduce the cost and increase the efficiency of the hand-labelling of large-scale data. This thesis aims to study whether identifying rumours before they go viral is possible and develop an architecture for ERD at individual post level. To this end, it first explores major bottlenecks of current ERD. It also uncovers a research gap between system design and its applications in the real world, which have received less attention from the research community of ERD. One bottleneck is limited labelled data. Weakly supervised methods to augment limited labelled training data for ERD are introduced. The other bottleneck is enormous amounts of noisy data. A framework unifying burst detection based on temporal signals and burst summarisation is investigated to identify potential rumours (i.e. input to rumour detection models) by filtering out uninformative messages. Finally, a novel method which jointly learns rumour sources and their contexts (i.e. conversational threads) for ERD is proposed. An extensive evaluation setting for ERD systems is also introduced

    A Full-Image Full-Resolution End-to-End-Trainable CNN Framework for Image Forgery Detection

    Full text link
    Due to limited computational and memory resources, current deep learning models accept only rather small images in input, calling for preliminary image resizing. This is not a problem for high-level vision problems, where discriminative features are barely affected by resizing. On the contrary, in image forensics, resizing tends to destroy precious high-frequency details, impacting heavily on performance. One can avoid resizing by means of patch-wise processing, at the cost of renouncing whole-image analysis. In this work, we propose a CNN-based image forgery detection framework which makes decisions based on full-resolution information gathered from the whole image. Thanks to gradient checkpointing, the framework is trainable end-to-end with limited memory resources and weak (image-level) supervision, allowing for the joint optimization of all parameters. Experiments on widespread image forensics datasets prove the good performance of the proposed approach, which largely outperforms all baselines and all reference methods.Comment: 13 pages, 12 figures, journa
    corecore