1,487 research outputs found

    Survey on Leveraging Uncertainty Estimation Towards Trustworthy Deep Neural Networks: The Case of Reject Option and Post-training Processing

    Full text link
    Although neural networks (especially deep neural networks) have achieved \textit{better-than-human} performance in many fields, their real-world deployment is still questionable due to the lack of awareness about the limitation in their knowledge. To incorporate such awareness in the machine learning model, prediction with reject option (also known as selective classification or classification with abstention) has been proposed in literature. In this paper, we present a systematic review of the prediction with the reject option in the context of various neural networks. To the best of our knowledge, this is the first study focusing on this aspect of neural networks. Moreover, we discuss different novel loss functions related to the reject option and post-training processing (if any) of network output for generating suitable measurements for knowledge awareness of the model. Finally, we address the application of the rejection option in reducing the prediction time for the real-time problems and present a comprehensive summary of the techniques related to the reject option in the context of extensive variety of neural networks. Our code is available on GitHub: \url{https://github.com/MehediHasanTutul/Reject_option

    Graph signal processing for machine learning: A review and new perspectives

    Get PDF
    The effective representation, processing, analysis, and visualization of large-scale structured data, especially those related to complex domains such as networks and graphs, are one of the key questions in modern machine learning. Graph signal processing (GSP), a vibrant branch of signal processing models and algorithms that aims at handling data supported on graphs, opens new paths of research to address this challenge. In this article, we review a few important contributions made by GSP concepts and tools, such as graph filters and transforms, to the development of novel machine learning algorithms. In particular, our discussion focuses on the following three aspects: exploiting data structure and relational priors, improving data and computational efficiency, and enhancing model interpretability. Furthermore, we provide new perspectives on future development of GSP techniques that may serve as a bridge between applied mathematics and signal processing on one side, and machine learning and network science on the other. Cross-fertilization across these different disciplines may help unlock the numerous challenges of complex data analysis in the modern age

    The Survey, Taxonomy, and Future Directions of Trustworthy AI: A Meta Decision of Strategic Decisions

    Full text link
    When making strategic decisions, we are often confronted with overwhelming information to process. The situation can be further complicated when some pieces of evidence are contradicted each other or paradoxical. The challenge then becomes how to determine which information is useful and which ones should be eliminated. This process is known as meta-decision. Likewise, when it comes to using Artificial Intelligence (AI) systems for strategic decision-making, placing trust in the AI itself becomes a meta-decision, given that many AI systems are viewed as opaque "black boxes" that process large amounts of data. Trusting an opaque system involves deciding on the level of Trustworthy AI (TAI). We propose a new approach to address this issue by introducing a novel taxonomy or framework of TAI, which encompasses three crucial domains: articulate, authentic, and basic for different levels of trust. To underpin these domains, we create ten dimensions to measure trust: explainability/transparency, fairness/diversity, generalizability, privacy, data governance, safety/robustness, accountability, reproducibility, reliability, and sustainability. We aim to use this taxonomy to conduct a comprehensive survey and explore different TAI approaches from a strategic decision-making perspective
    • …
    corecore