4,568 research outputs found

    People on Drugs: Credibility of User Statements in Health Communities

    Full text link
    Online health communities are a valuable source of information for patients and physicians. However, such user-generated resources are often plagued by inaccuracies and misinformation. In this work we propose a method for automatically establishing the credibility of user-generated medical statements and the trustworthiness of their authors by exploiting linguistic cues and distant supervision from expert sources. To this end we introduce a probabilistic graphical model that jointly learns user trustworthiness, statement credibility, and language objectivity. We apply this methodology to the task of extracting rare or unknown side-effects of medical drugs --- this being one of the problems where large scale non-expert data has the potential to complement expert medical knowledge. We show that our method can reliably extract side-effects and filter out false statements, while identifying trustworthy users that are likely to contribute valuable medical information

    Learning to Learn from Weak Supervision by Full Supervision

    Get PDF
    In this paper, we propose a method for training neural networks when we have a large set of data with weak labels and a small amount of data with true labels. In our proposed model, we train two neural networks: a target network, the learner and a confidence network, the meta-learner. The target network is optimized to perform a given task and is trained using a large set of unlabeled data that are weakly annotated. We propose to control the magnitude of the gradient updates to the target network using the scores provided by the second confidence network, which is trained on a small amount of supervised data. Thus we avoid that the weight updates computed from noisy labels harm the quality of the target network model.Comment: Accepted at NIPS Workshop on Meta-Learning (MetaLearn 2017), Long Beach, CA, US

    Weakly supervised aspect extraction for domain-specific texts

    Get PDF
    Aspect extraction, identifying aspects of text segments from a pre-defined set of aspects, is one of the keystones in text understanding. It benefits numerous applications, including sentiment analysis and product review summarization. Most existing aspect extraction methods heavily rely on human-curated aspect annotations of massive text segments, thus making them expensive to be applied in specific domains. Recent attempts leveraging clustering methods can alleviate such annotation effort, but they require domain-specific knowledge and effort to further filter, aggregate, and align the clustering results to desired aspects. Therefore, in this paper, we explore to extract aspects from the domain-specific raw texts with very limited supervision – only a few user-provided seed words per each aspect. Specifically, our proposed neural model is equipped with multi-head attention and self-training. The multi-head attention is learned from the seed words to ensure that the aspect-related words in text segments are weighted higher than those unrelated ones. The self-training mechanism provides more pseudo labels in addition to limited supervision. Extensive experiments on real-world datasets demonstrate the superior performance of our proposed framework, as well as the effectiveness of both the attention module and the self-training mechanism. Case studies on the attention weights further shed lights on the interpretability of our aspect extraction results

    Short Text Categorization using World Knowledge

    Get PDF
    The content of the World Wide Web is drastically multiplying, and thus the amount of available online text data is increasing every day. Today, many users contribute to this massive global network via online platforms by sharing information in the form of a short text. Such an immense amount of data covers subjects from all the existing domains (e.g., Sports, Economy, Biology, etc.). Further, manually processing such data is beyond human capabilities. As a result, Natural Language Processing (NLP) tasks, which aim to automatically analyze and process natural language documents have gained significant attention. Among these tasks, due to its application in various domains, text categorization has become one of the most fundamental and crucial tasks. However, the standard text categorization models face major challenges while performing short text categorization, due to the unique characteristics of short texts, i.e., insufficient text length, sparsity, ambiguity, etc. In other words, the conventional approaches provide substandard performance, when they are directly applied to the short text categorization task. Furthermore, in the case of short text, the standard feature extraction techniques such as bag-of-words suffer from limited contextual information. Hence, it is essential to enhance the text representations with an external knowledge source. Moreover, the traditional models require a significant amount of manually labeled data and obtaining labeled data is a costly and time-consuming task. Therefore, although recently proposed supervised methods, especially, deep neural network approaches have demonstrated notable performance, the requirement of the labeled data remains the main bottleneck of these approaches. In this thesis, we investigate the main research question of how to perform \textit{short text categorization} effectively \textit{without requiring any labeled data} using knowledge bases as an external source. In this regard, novel short text categorization models, namely, Knowledge-Based Short Text Categorization (KBSTC) and Weakly Supervised Short Text Categorization using World Knowledge (WESSTEC) have been introduced and evaluated in this thesis. The models do not require any hand-labeled data to perform short text categorization, instead, they leverage the semantic similarity between the short texts and the predefined categories. To quantify such semantic similarity, the low dimensional representation of entities and categories have been learned by exploiting a large knowledge base. To achieve that a novel entity and category embedding model has also been proposed in this thesis. The extensive experiments have been conducted to assess the performance of the proposed short text categorization models and the embedding model on several standard benchmark datasets

    Distantly Labeling Data for Large Scale Cross-Document Coreference

    Full text link
    Cross-document coreference, the problem of resolving entity mentions across multi-document collections, is crucial to automated knowledge base construction and data mining tasks. However, the scarcity of large labeled data sets has hindered supervised machine learning research for this task. In this paper we develop and demonstrate an approach based on ``distantly-labeling'' a data set from which we can train a discriminative cross-document coreference model. In particular we build a dataset of more than a million people mentions extracted from 3.5 years of New York Times articles, leverage Wikipedia for distant labeling with a generative model (and measure the reliability of such labeling); then we train and evaluate a conditional random field coreference model that has factors on cross-document entities as well as mention-pairs. This coreference model obtains high accuracy in resolving mentions and entities that are not present in the training data, indicating applicability to non-Wikipedia data. Given the large amount of data, our work is also an exercise demonstrating the scalability of our approach.Comment: 16 pages, submitted to ECML 201

    Fidelity-Weighted Learning

    Full text link
    Training deep neural networks requires many training samples, but in practice training labels are expensive to obtain and may be of varying quality, as some may be from trusted expert labelers while others might be from heuristics or other sources of weak supervision such as crowd-sourcing. This creates a fundamental quality versus-quantity trade-off in the learning process. Do we learn from the small amount of high-quality data or the potentially large amount of weakly-labeled data? We argue that if the learner could somehow know and take the label-quality into account when learning the data representation, we could get the best of both worlds. To this end, we propose "fidelity-weighted learning" (FWL), a semi-supervised student-teacher approach for training deep neural networks using weakly-labeled data. FWL modulates the parameter updates to a student network (trained on the task we care about) on a per-sample basis according to the posterior confidence of its label-quality estimated by a teacher (who has access to the high-quality labels). Both student and teacher are learned from the data. We evaluate FWL on two tasks in information retrieval and natural language processing where we outperform state-of-the-art alternative semi-supervised methods, indicating that our approach makes better use of strong and weak labels, and leads to better task-dependent data representations.Comment: Published as a conference paper at ICLR 201
    • …
    corecore