2,427 research outputs found

    CardioCam: Leveraging Camera on Mobile Devices to Verify Users While Their Heart is Pumping

    Get PDF
    With the increasing prevalence of mobile and IoT devices (e.g., smartphones, tablets, smart-home appliances), massive private and sensitive information are stored on these devices. To prevent unauthorized access on these devices, existing user verification solutions either rely on the complexity of user-defined secrets (e.g., password) or resort to specialized biometric sensors (e.g., fingerprint reader), but the users may still suffer from various attacks, such as password theft, shoulder surfing, smudge, and forged biometrics attacks. In this paper, we propose, CardioCam, a low-cost, general, hard-to-forge user verification system leveraging the unique cardiac biometrics extracted from the readily available built-in cameras in mobile and IoT devices. We demonstrate that the unique cardiac features can be extracted from the cardiac motion patterns in fingertips, by pressing on the built-in camera. To mitigate the impacts of various ambient lighting conditions and human movements under practical scenarios, CardioCam develops a gradient-based technique to optimize the camera configuration, and dynamically selects the most sensitive pixels in a camera frame to extract reliable cardiac motion patterns. Furthermore, the morphological characteristic analysis is deployed to derive user-specific cardiac features, and a feature transformation scheme grounded on Principle Component Analysis (PCA) is developed to enhance the robustness of cardiac biometrics for effective user verification. With the prototyped system, extensive experiments involving 25 subjects are conducted to demonstrate that CardioCam can achieve effective and reliable user verification with over 99% average true positive rate (TPR) while maintaining the false positive rate (FPR) as low as 4%

    Hybrid Deep Learning Algorithm for Insulin Dosage Prediction Using Blockchain and IOT

    Get PDF
    This paper addresses the problem of predicting insulin dosage in diabetes patients using the PSO-LSTM, COA-LSTM, and LOA-LSTM algorithms. Accurate insulin dosage prediction is crucial in effectively managing Diabetes and maintaining blood glucose levels within the desired range. The study proposes a novel approach that combines particle swarm optimization (PSO) with the long short-term memory (LSTM) model. PSO is used to optimize the LSTM's parameters, enhancing its prediction capabilities specifically for insulin dosage. Additionally, two other techniques, COA-LSTM and LOA-LSTM, are introduced for comparison purposes. The algorithms utilize a dataset comprising relevant features such as past insulin dosages, blood glucose levels, carbohydrate intake, and physical activity. These features are fed into the PSO-LSTM, COA-LSTM, and LOA-LSTM models to predict the appropriate insulin dosage for future time points. The results demonstrate the effectiveness of the proposed PSO-LSTM algorithm in accurately predicting insulin dosage, surpassing the performance of COA-LSTM and LOA-LSTM. The PSO-LSTM model achieves a high level of accuracy, aiding in personalized and precise insulin administration for diabetes patients. By leveraging the power of PSO optimization and LSTM modeling, this research improves the accuracy and reliability of insulin dosage prediction. The findings highlight the potential of the PSO-LSTM algorithm as a valuable tool for healthcare professionals in optimizing diabetes management and enhancing patient outcomes

    Future Opportunities for IoT to Support People with Parkinson’s

    Get PDF
    Recent years have seen an explosion of internet of things (IoT) technologies being released to the market. There has also been an emerging interest in the potentials of IoT devices to support people with chronic health conditions. In this paper, we describe the results of engagements to scope the future potentials of IoT for supporting people with Parkinson’s. We ran a 2-day multi-disciplinary event with professionals with expertise in Parkinson’s and IoT, to explore the opportunities, challenges and benefits. We then ran 4 workshops, engaging 13 people with Parkinson’s and caregivers, to scope out the needs, values and desires that the community has for utilizing IoT to monitor their symptoms. This work contributes a set of considerations for future IoT solutions that might support people with Parkinson’s in better understanding their condition, through the provision of objective measurements that correspond to their, currently unmeasured, subjective experiences

    Cyborgs as Frontline Service Employees: A Research Agenda

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Purpose This paper identifies and explores potential applications of cyborgian technologies within service contexts and how service providers may leverage the integration of cyborgian service actors into their service proposition. In doing so, the paper proposes a new category of ‘melded’ frontline service employees (FLEs), where advanced technologies become embodied within human actors. The paper presents potential opportunities and challenges that may arise through cyborg technological advancements and proposes a future research agenda related to these. Design/methodology This study draws on literature in the fields of services management, Artificial Intelligence [AI], robotics, Intelligence Augmentation [IA] and Human Intelligence [HIs] to conceptualise potential cyborgian applications. Findings The paper examines how cyborg bio- and psychophysical characteristics may significantly differentiate the nature of service interactions from traditional ‘unenhanced’ service interactions. In doing so, we propose ‘melding’ as a conceptual category of technological impact on FLEs. This category reflects the embodiment of emergent technologies not previously captured within existing literature on cyborgs. We examine how traditional roles of FLEs will be potentially impacted by the integration of emergent cyborg technologies, such as neural interfaces and implants, into service contexts before outlining future research directions related to these, specifically highlighting the range of ethical considerations. Originality/Value Service interactions with cyborg FLEs represent a new context for examining the potential impact of cyborgs. This paper explores how technological advancements will alter the individual capacities of humans to enable such employees to intuitively and empathetically create solutions to complex service challenges. In doing so, we augment the extant literature on cyborgs, such as the body hacking movement. The paper also outlines a research agenda to address the potential consequences of cyborgian integration

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    TinyML based Deep Learning Model for Activity Detection

    Get PDF
    Our physical and emotional well-being are directly impacted by our body positions. In addition to promoting a confident, upright image, maintaining good body posture during various activities also ensures that our musculoskeletal system is properly aligned. On the other side, bad posture can result in a number of musculoskeletal conditions, discomfort, and reduced productivity. Accurate systems that can detect posture in real time, activity detection, are required due to the rising use of wearable technology and the growing interest in health and fitness tracking. The goal of this project is to create a TinyML model for wearable activity detection that will allow users to assess their posture and make necessary corrections in order to improve their health and general well-being. The project intends to contribute to the creation of useful posture detection technologies that can be quickly implemented on wearable devices for widespread usage by leveraging machine learning algorithms and wearable sensor data. For reliable posture categorization, the model architecture combines deep neural networks (DNN) and LSTM layers. With the development and implementation of the TinyML model, a significant decrease in the model's power consumption, memory, and latency was achieved without any compromise in the accuracy. This work can be used in the fields of health, wellness, rehabilitation, corporate life, sports and fitness to keep track of calories burned, activity duration, distance traveled, posture analysis, and real-time tracking
    corecore