17,608 research outputs found

    Report of the Stanford Linked Data Workshop

    No full text
    The Stanford University Libraries and Academic Information Resources (SULAIR) with the Council on Library and Information Resources (CLIR) conducted at week-long workshop on the prospects for a large scale, multi-national, multi-institutional prototype of a Linked Data environment for discovery of and navigation among the rapidly, chaotically expanding array of academic information resources. As preparation for the workshop, CLIR sponsored a survey by Jerry Persons, Chief Information Architect emeritus of SULAIR that was published originally for workshop participants as background to the workshop and is now publicly available. The original intention of the workshop was to devise a plan for such a prototype. However, such was the diversity of knowledge, experience, and views of the potential of Linked Data approaches that the workshop participants turned to two more fundamental goals: building common understanding and enthusiasm on the one hand and identifying opportunities and challenges to be confronted in the preparation of the intended prototype and its operation on the other. In pursuit of those objectives, the workshop participants produced:1. a value statement addressing the question of why a Linked Data approach is worth prototyping;2. a manifesto for Linked Libraries (and Museums and Archives and …);3. an outline of the phases in a life cycle of Linked Data approaches;4. a prioritized list of known issues in generating, harvesting & using Linked Data;5. a workflow with notes for converting library bibliographic records and other academic metadata to URIs;6. examples of potential “killer apps” using Linked Data: and7. a list of next steps and potential projects.This report includes a summary of the workshop agenda, a chart showing the use of Linked Data in cultural heritage venues, and short biographies and statements from each of the participants

    A literature synthesis of personalised technology-enhanced learning: what works and why

    Get PDF
    Personalised learning, having seen both surges and declines in popularity over the past few decades, is once again enjoying a resurgence. Examples include digital resources tailored to a particular learner’s needs, or individual feedback on a student’s assessed work. In addition, personalised technology-enhanced learning (TEL) now seems to be attracting interest from philanthropists and venture capitalists indicating a new level of enthusiasm for the area and a potential growth industry. However, these industries may be driven by profit rather than pedagogy, and hence it is vital these new developments are informed by relevant, evidence-based research. For many people, personalised learning is an ambiguous and even loaded term that promises much but does not always deliver. This paper provides an in-depth and critical review and synthesis of how personalisation has been represented in the literature since 2000, with a particular focus on TEL. We examine the reasons why personalised learning can be beneficial and examine how TEL can contribute to this. We also unpack how personalisation can contribute to more effective learning. Lastly, we examine the limitations of personalised learning and discuss the potential impacts on wider stakeholders

    Simplifying Deep-Learning-Based Model for Code Search

    Full text link
    To accelerate software development, developers frequently search and reuse existing code snippets from a large-scale codebase, e.g., GitHub. Over the years, researchers proposed many information retrieval (IR) based models for code search, which match keywords in query with code text. But they fail to connect the semantic gap between query and code. To conquer this challenge, Gu et al. proposed a deep-learning-based model named DeepCS. It jointly embeds method code and natural language description into a shared vector space, where methods related to a natural language query are retrieved according to their vector similarities. However, DeepCS' working process is complicated and time-consuming. To overcome this issue, we proposed a simplified model CodeMatcher that leverages the IR technique but maintains many features in DeepCS. Generally, CodeMatcher combines query keywords with the original order, performs a fuzzy search on name and body strings of methods, and returned the best-matched methods with the longer sequence of used keywords. We verified its effectiveness on a large-scale codebase with about 41k repositories. Experimental results showed the simplified model CodeMatcher outperforms DeepCS by 97% in terms of MRR (a widely used accuracy measure for code search), and it is over 66 times faster than DeepCS. Besides, comparing with the state-of-the-art IR-based model CodeHow, CodeMatcher also improves the MRR by 73%. We also observed that: fusing the advantages of IR-based and deep-learning-based models is promising because they compensate with each other by nature; improving the quality of method naming helps code search, since method name plays an important role in connecting query and code
    • …
    corecore