579 research outputs found

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Understanding the role of sensor optimisation in complex systems

    Get PDF
    Complex systems involve monitoring, assessing, and predicting the health of various systems within an integrated vehicle health management (IVHM) system or a larger system. Health management applications rely on sensors that generate useful information about the health condition of the assets; thus, optimising the sensor network quality while considering specific constraints is the first step in assessing the condition of assets. The optimisation problem in sensor networks involves considering trade-offs between different performance metrics. This review paper provides a comprehensive guideline for practitioners in the field of sensor optimisation for complex systems. It introduces versatile multi-perspective cost functions for different aspects of sensor optimisation, including selection, placement, data processing and operation. A taxonomy and concept map of the field are defined as valuable navigation tools in this vast field. Optimisation techniques and quantification approaches of the cost functions are discussed, emphasising their adaptability to tailor to specific application requirements. As a pioneering contribution, all the relevant literature is gathered and classified here to further improve the understanding of optimal sensor networks from an information-gain perspective

    Deep Learning for predictive maintenance

    Get PDF
    Recently, with the appearance of Industry 4.0 (I4.0), machine learning (ML) within artificial intelligence (AI), industrial Internet of things (IIoT) and cyber-physical system (CPS) have accelerated the development of a data-orientated applications such as predictive maintenance (PdM). PdM applied to asset-dependent industries has led to operational cost savings, productivity improvements and enhanced safety management capabilities. In addition, predictive maintenance strategies provide useful information concerning the source of the failure or malfunction, reducing unnecessary maintenance operations. The concept of prognostics and health management (PHM) has appeared as a predictive maintenance process. PHM has become an unavoidable tendency in smart manufacturing to offer a reliable solution for handling industrial equipment’s health status. This later requires efficient and effective system health monitoring methods, including processing and analysing massive machinery data to detect anomalies and perform diagnosis and prognosis. Prognostics is considered a key PHM process with capabilities for predicting future states, mainly based on predicting the residual lifetime during which a machine can perform its intended function, i.e., estimating the remaining useful life (RUL) of a system. The prognostic research domain is far from being mature, which is still new and explains the various challenges that must be addressed. Therefore, the work presented in this thesis will mainly focus on the prognostic of monitored machinery from an RUL estimation point of view using Deep Learning (DL) algorithms. Capitalising on the recent success of the DL, this dissertation introduces methods and algorithms dedicated to predictive maintenance. We focused on improving the performance of aero-engine prognostic, particularly in estimating an accurate RUL using ensemble learning and deep learning. To this end, two contributions have been proposed, and the results obtained were validated by an extensive comparative analysis using public C-MAPSS turbofan engine benchmark datasets. The first contribution, for RUL predictions, we proposed two-hybrid methods based on the promising DL architectures to leverage the power of the multimodal and hybrid deep neural network in order to capture various information at different time intervals and ultimately achieve more accurate RUL predictions. The proposed end-to-end deep architectures jointly optimise the feature reduction and RUL prediction steps in a hierarchical manner, intending to achieve data representation in low dimensionality and minimal variable redundancy while preserving critical asset degradation information with minimal preprocessing effort. The second contribution, in a practical situation, RUL is usually affected by uncertainty. Therefore, we proposed an innovative RUL estimation strategy that assesses degrading machinery’s health status (provides the probabilities of system failure in different time windows) and provides the prediction of RUL window. Keywords: Prognostics and Health Management (PHM), Remaining useful life (RUL), Predictive Maintenance (PdM), C-MAPSS dataset, Ensemble learning, Deep learnin

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Cyber Security and Critical Infrastructures 2nd Volume

    Get PDF
    The second volume of the book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles, including an editorial that explains the current challenges, innovative solutions and real-world experiences that include critical infrastructure and 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems

    IoT Data Analytics in Dynamic Environments: From An Automated Machine Learning Perspective

    Full text link
    With the wide spread of sensors and smart devices in recent years, the data generation speed of the Internet of Things (IoT) systems has increased dramatically. In IoT systems, massive volumes of data must be processed, transformed, and analyzed on a frequent basis to enable various IoT services and functionalities. Machine Learning (ML) approaches have shown their capacity for IoT data analytics. However, applying ML models to IoT data analytics tasks still faces many difficulties and challenges, specifically, effective model selection, design/tuning, and updating, which have brought massive demand for experienced data scientists. Additionally, the dynamic nature of IoT data may introduce concept drift issues, causing model performance degradation. To reduce human efforts, Automated Machine Learning (AutoML) has become a popular field that aims to automatically select, construct, tune, and update machine learning models to achieve the best performance on specified tasks. In this paper, we conduct a review of existing methods in the model selection, tuning, and updating procedures in the area of AutoML in order to identify and summarize the optimal solutions for every step of applying ML algorithms to IoT data analytics. To justify our findings and help industrial users and researchers better implement AutoML approaches, a case study of applying AutoML to IoT anomaly detection problems is conducted in this work. Lastly, we discuss and classify the challenges and research directions for this domain.Comment: Published in Engineering Applications of Artificial Intelligence (Elsevier, IF:7.8); Code/An AutoML tutorial is available at Github link: https://github.com/Western-OC2-Lab/AutoML-Implementation-for-Static-and-Dynamic-Data-Analytic
    • …
    corecore