920 research outputs found

    A Unified And Green Platform For Smartphone Sensing

    Get PDF
    Smartphones have become key communication and entertainment devices in people\u27s daily life. Sensors on (or attached to) smartphones can enable attractive sensing applications in different domains, including environmental monitoring, social networking, healthcare, transportation, etc. Most existing smartphone sensing systems are application-specific. How to leverage smartphones\u27 sensing capability to make them become unified information providers for various applications has not yet been fully explored. This dissertation presents a unified and green platform for smartphone sensing, which has the following desirable features: 1) It can support various smartphone sensing applications; 2) It is personalizable; 2) It is energy-efficient; and 3) It can be easily extended to support new sensors. Two novel sensing applications are built and integrated into this unified platform: SOR and LIPS. SOR is a smartphone Sensing based Objective Ranking (SOR) system. Different from a few subjective online review and recommendation systems (such as Yelp and TripAdvisor), SOR ranks a target place based on data collected via smartphone sensing. LIPS is a system that learns the LIfestyles of mobile users via smartPhone Sensing (LIPS). Combining both unsupervised and supervised learning, a hybrid scheme is proposed to characterize lifestyle and predict future activities of mobile users. This dissertation also studies how to use the cloud as a coordinator to assist smartphones for sensing collaboratively with the objective of reducing sensing energy consumption. A novel probabilistic model is built to address the GPS-less energy-efficient crowd sensing problem. Provably-good approximation algorithms are presented to enable smartphones to sense collaboratively without accurate locations such that sensing coverage requirements can be met with limited energy consumption

    Design and Implementation of an Innovative Internet of Things (IOT) based Smart Energy Meter

    Get PDF
    Energy meter is very essential measuring instrument for measuring the power in domestic, industrial etc. environment. Correct and appropriate measuring of power without any error is important in order to calculate the total power consumption and then for tariff calculation. In view of this, in this paper design and implementation on an innovative smart energy meter is proposed. The proposed smart energy meter is based on Internet of Things (IoT) applications. The paper describes its design along with its working

    Internet of Things (IoT): Research, Architectures and Applications

    Get PDF
    Internet of Things is the concept of connecting any device (so long as it has an on/off switch) to the Internet and to other connected devices. The IoT is a giant network of connected things and people, all of which collect and share data about the way they are used and about the environment around them. Experts estimate that the IoT will consist of about 30 billion objects by 2020. This paper presents a study based on IoT and its applications in different field of science and technology. Along with the introduction of the IoT literature review is also provided. The paper also discusses the architecture and elements of the IoT along with its different applications

    From Personalized Medicine to Population Health: A Survey of mHealth Sensing Techniques

    Full text link
    Mobile Sensing Apps have been widely used as a practical approach to collect behavioral and health-related information from individuals and provide timely intervention to promote health and well-beings, such as mental health and chronic cares. As the objectives of mobile sensing could be either \emph{(a) personalized medicine for individuals} or \emph{(b) public health for populations}, in this work we review the design of these mobile sensing apps, and propose to categorize the design of these apps/systems in two paradigms -- \emph{(i) Personal Sensing} and \emph{(ii) Crowd Sensing} paradigms. While both sensing paradigms might incorporate with common ubiquitous sensing technologies, such as wearable sensors, mobility monitoring, mobile data offloading, and/or cloud-based data analytics to collect and process sensing data from individuals, we present a novel taxonomy system with two major components that can specify and classify apps/systems from aspects of the life-cycle of mHealth Sensing: \emph{(1) Sensing Task Creation \& Participation}, \emph{(2) Health Surveillance \& Data Collection}, and \emph{(3) Data Analysis \& Knowledge Discovery}. With respect to different goals of the two paradigms, this work systematically reviews this field, and summarizes the design of typical apps/systems in the view of the configurations and interactions between these two components. In addition to summarization, the proposed taxonomy system also helps figure out the potential directions of mobile sensing for health from both personalized medicines and population health perspectives.Comment: Submitted to a journal for revie

    Mechanisms for improving information quality in smartphone crowdsensing systems

    Get PDF
    Given its potential for a large variety of real-life applications, smartphone crowdsensing has recently gained tremendous attention from the research community. Smartphone crowdsensing is a paradigm that allows ordinary citizens to participate in large-scale sensing surveys by using user-friendly applications installed in their smartphones. In this way, fine-grained sensing information is obtained from smartphone users without employing fixed and expensive infrastructure, and with negligible maintenance costs. Existing smartphone sensing systems depend completely on the participants\u27 willingness to submit up-to-date and accurate information regarding the events being monitored. Therefore, it becomes paramount to scalably and effectively determine, enforce, and optimize the information quality of the sensing reports submitted by the participants. To this end, mechanisms to improve information quality in smartphone crowdsensing systems were designed in this work. Firstly, the FIRST framework is presented, which is a reputation-based mechanism that leverages the concept of mobile trusted participants to determine and improve the information quality of collected data. Secondly, it is mathematically modeled and studied the problem of maximizing the likelihood of successful execution of sensing tasks when participants having uncertain mobility execute sensing tasks. Two incentive mechanisms based on game and auction theory are then proposed to efficiently and scalably solve such problem. Experimental results demonstrate that the mechanisms developed in this thesis outperform existing state of the art in improving information quality in smartphone crowdsensing systems --Abstract, page iii

    MODELING AND RESOURCE ALLOCATION IN MOBILE WIRELESS NETWORKS

    Get PDF
    We envision that in the near future, just as Infrastructure-as-a-Service (IaaS), radios and radio resources in a wireless network can also be provisioned as a service to Mobile Virtual Network Operators (MVNOs), which we refer to as Radio-as-a-Service (RaaS). In this thesis, we present a novel auction-based model to enable fair pricing and fair resource allocation according to real-time needs of MVNOs for RaaS. Based on the proposed model, we study the auction mechanism design with the objective of maximizing social welfare. We present an Integer Linear Programming (ILP) and Vickrey-Clarke-Groves (VCG) based auction mechanism for obtaining optimal social welfare. To reduce time complexity, we present a polynomial-time greedy mechanism for the RaaS auction. Both methods have been formally shown to be truthful and individually rational. Meanwhile, wireless networks have become more and more advanced and complicated, which are generating a large amount of runtime system statistics. In this thesis, we also propose to leverage the emerging deep learning techniques for spatiotemporal modeling and prediction in cellular networks, based on big system data. We present a hybrid deep learning model for spatiotemporal prediction, which includes a novel autoencoder-based deep model for spatial modeling and Long Short-Term Memory units (LSTMs) for temporal modeling. The autoencoder-based model consists of a Global Stacked AutoEncoder (GSAE) and multiple Local SAEs (LSAEs), which can offer good representations for input data, reduced model size, and support for parallel and application-aware training. Mobile wireless networks have become an essential part in wireless networking with the prevalence of mobile device usage. Most mobile devices have powerful sensing capabilities. We consider a general-purpose Mobile CrowdSensing(MCS) system, which is a multi-application multi-task system that supports a large variety of sensing applications. In this thesis, we also study the quality of the recruited crowd for MCS, i.e., quality of services/data each individual mobile user and the whole crowd are potentially capable of providing. Moreover, to improve flexibility and effectiveness, we consider fine-grained MCS, in which each sensing task is divided into multiple subtasks and a mobile user may make contributions to multiple subtasks. More specifically, we first introduce mathematical models for characterizing the quality of a recruited crowd for different sensing applications. Based on these models, we present a novel auction formulation for quality-aware and fine- grained MCS, which minimizes the expected expenditure subject to the quality requirement of each subtask. Then we discuss how to achieve the optimal expected expenditure, and present a practical incentive mechanism to solve the auction problem, which is shown to have the desirable properties of truthfulness, individual rationality and computational efficiency. In a MCS system, a sensing task is dispatched to many smartphones for data collections; in the meanwhile, a smartphone undertakes many different sensing tasks that demand data from various sensors. In this thesis, we also consider the problem of scheduling different sensing tasks assigned to a smartphone with the objective of minimizing sensing energy consumption while ensuring Quality of SenSing (QoSS). First, we consider a simple case in which each sensing task only requests data from a single sensor. We formally define the corresponding problem as the Minimum Energy Single-sensor task Scheduling (MESS) problem and present a polynomial-time optimal algorithm to solve it. Furthermore, we address a more general case in which some sensing tasks request multiple sensors to re- port their measurements simultaneously. We present an Integer Linear Programming (ILP) formulation as well as two effective polynomial-time heuristic algorithms, for the corresponding Minimum Energy Multi-sensor task Scheduling (MEMS) problem. Numerical results are presented to confirm the theoretical analysis of our schemes, and to show strong performances of our solutions, compared to several baseline methods
    • …
    corecore