23,419 research outputs found

    SIMDAT

    No full text

    Global state, local decisions: Decentralized NFV for ISPs via enhanced SDN

    Get PDF
    The network functions virtualization paradigm is rapidly gaining interest among Internet service providers. However, the transition to this paradigm on ISP networks comes with a unique set of challenges: legacy equipment already in place, heterogeneous traffic from multiple clients, and very large scalability requirements. In this article we thoroughly analyze such challenges and discuss NFV design guidelines that address them efficiently. Particularly, we show that a decentralization of NFV control while maintaining global state improves scalability, offers better per-flow decisions and simplifies the implementation of virtual network functions. Building on top of such principles, we propose a partially decentralized NFV architecture enabled via an enhanced software-defined networking infrastructure. We also perform a qualitative analysis of the architecture to identify advantages and challenges. Finally, we determine the bottleneck component, based on the qualitative analysis, which we implement and benchmark in order to assess the feasibility of the architecture.Peer ReviewedPostprint (author's final draft

    Enabling High-Level Application Development for the Internet of Things

    Get PDF
    Application development in the Internet of Things (IoT) is challenging because it involves dealing with a wide range of related issues such as lack of separation of concerns, and lack of high-level of abstractions to address both the large scale and heterogeneity. Moreover, stakeholders involved in the application development have to address issues that can be attributed to different life-cycles phases. when developing applications. First, the application logic has to be analyzed and then separated into a set of distributed tasks for an underlying network. Then, the tasks have to be implemented for the specific hardware. Apart from handling these issues, they have to deal with other aspects of life-cycle such as changes in application requirements and deployed devices. Several approaches have been proposed in the closely related fields of wireless sensor network, ubiquitous and pervasive computing, and software engineering in general to address the above challenges. However, existing approaches only cover limited subsets of the above mentioned challenges when applied to the IoT. This paper proposes an integrated approach for addressing the above mentioned challenges. The main contributions of this paper are: (1) a development methodology that separates IoT application development into different concerns and provides a conceptual framework to develop an application, (2) a development framework that implements the development methodology to support actions of stakeholders. The development framework provides a set of modeling languages to specify each development concern and abstracts the scale and heterogeneity related complexity. It integrates code generation, task-mapping, and linking techniques to provide automation. Code generation supports the application development phase by producing a programming framework that allows stakeholders to focus on the application logic, while our mapping and linking techniques together support the deployment phase by producing device-specific code to result in a distributed system collaboratively hosted by individual devices. Our evaluation based on two realistic scenarios shows that the use of our approach improves the productivity of stakeholders involved in the application development
    • …
    corecore